Moana Peylhard, David Berthier, Guiguigbaza-Kossigan Dayo, Isabelle Chantal, Souleymane Sylla, Sabine Nidelet, Emeric Dubois, Guillaume Martin, Guilhem Sempéré, Laurence Flori, Sophie ThévenonPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
<p>Animal African trypanosomosis, caused by blood protozoan parasites transmitted mainly by tsetse flies, represents a major constraint for millions of cattle in sub-Saharan Africa. Exposed cattle include trypanosusceptible indicine breeds, severely affected by the disease, and West African taurine breeds called trypanotolerant owing to their ability to control parasite development, survive and grow in enzootic areas. Until now the genetic basis of trypanotolerance remains unclear. Here, to improve knowledge of the biological processes involved in trypanotolerance versus trypanosusceptibility, we identified bovine genes differentially expressed in five West African cattle breeds during an experimental infection by Trypanosoma congolense and their biological functions. To this end, whole blood genome-wide transcriptome of three trypanotolerant taurine breeds (N’Dama, Lagune and Baoulé), one susceptible zebu (Zebu Fulani) and one African taurine x zebu admixed breed (Borgou) were profiled by RNA sequencing at four time points, one before and three during infection. As expected, infection had a major impact on cattle blood transcriptome regardless of the breed. The functional analysis of differentially expressed genes over time in each breed confirmed an early activation of the innate immune response, followed by an activation of the humoral response and an inhibition of T cell functions at the chronic stage of infection. More importantly, we highlighted overlooked features, such as a strong disturbance in host metabolism and cellular energy production that differentiates trypanotolerant and trypanosusceptible breeds. N’Dama breed showed the earliest regulation of immune response, associated with a strong activation of cellular energy production, also observed in Lagune, and to a lesser extent in Baoulé. Susceptible Zebu Fulani breed differed from other breeds by the strongest modification in lipid metabolism regulation. Overall, this study provides a better understanding of the biological mechanisms at work during infection, especially concerning the interplay between immunity and metabolism that seems differentially regulated depending on the cattle breeds.</p>
https://doi.org/10.18167/DVN1/L9SHAX, https://doi.org/10.18167/DVN1/APTZOC, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE197108You should fill this box only if you chose 'All or part of the results presented in this preprint are based on data'. URL must start with http:// or https://
trypanotolerance, transcriptomics, RNA-seq, cattle, Trypanosoma congolense, Animal African Trypanosomosis, nagana, N’Dama, immune response, metabolism
Animal diseases, Genomics, functional genomics of hosts, infectious agents, or vectors, Resistance/Virulence/Tolerance
Liam Morrisson, Liam.Morrison@roslin.ed.ac.uk, David Mac Hugh, david.machugh@ucd.ie, Gilles Foucras, gilles.foucras@envt.fr, Olivier Hanotte, olivier.hanotte@nottingham.ac.uk, Hamidou Ilboudo, hamidou_ilboudo@hotmail.com
e.g. John Doe john@doe.com
No need for them to be recommenders of PCIInfections. Please do not suggest reviewers for whom there might be a conflict of interest. Reviewers are not allowed to review preprints written by close colleagues (with whom they have published in the last four years, with whom they have received joint funding in the last four years, or with whom they are currently writing a manuscript, or submitting a grant proposal), or by family members, friends, or anyone for whom bias might affect the nature of the review - see the code of conduct