Matthieu Fritz, Berenice Reggiardo, Denis Filloux, Lisa Claude, Emmanuel Fernandez, Frederic Mahe, Simona Kraberger, Joy M. Custer, Pierre Becquart, Telstar Ndong Mebaley, Linda Bohou Kombila, Leadisaelle H. Lenguiya, Larson Boundenga, Illich M. Mombo, Gael Darren Maganga, Fabien R. Niama, Jean-Sylvain Koumba, Mylene Ogliastro, Michel Yvon, Darren Martin, Stephane Blanc, Arvind Varsani, Eric Leroy, Philippe RoumagnacPlease use the format "First name initials family name" as in "Marie S. Curie, Niels H. D. Bohr, Albert Einstein, John R. R. Tolkien, Donna T. Strickland"
<p style="text-align: justify;">In this study, we used a predator-enabled metagenomics strategy to sample the virome of a remote and difficult-to-access densely forested African tropical region. Specifically, we focused our study on the use of army ants of the genus Dorylus that are obligate collective foragers and group predators that attack and overwhelm a broad array of animal prey. Using 209 army ant samples collected from 29 colonies and the virion-associated nucleic acid-based metagenomics approach, we showed that a broad diversity of bacterial, plant, invertebrate and vertebrate viral sequences were accumulated by army ants: including sequences from 157 different viral genera in 56 viral families. This suggests that using predators and scavengers such as army ants to sample broad swathes of tropical forest viromes can shed light on the composition and the structure of viral populations of these complex and inaccessible ecosystems.</p>
Army ants, Predator Enabled Metagenomics, plant viruses, animal viruses, remote ecosystems
Ecohealth, Ecology of hosts, infectious agents, or vectors, One Health, Reservoirs, Viruses