
A Bayesian analysis of birth pulse effects
on the probability of detecting Ebola virus
in fruit bats

David R.J. Pleydell 1,2,3, Innocent Ndong Bass 4, Flaubert Auguste Mba
Djondzo 4, Dowbiss Meta Djomsi 4, Charles Kouanfack 4, Martine Peeters 5

Julien Cappelle 2,3

1 INRAE, UMR ASTRE, F-34398 Montpellier, France
2 CIRAD, UMR ASTRE, F-34398 Montpellier, France
3 ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, France
4 Laboratoire de Virologie-Cremer, Institut de Recherches Médicales et d’Études des Plantes Médicinales
(IMPM), Yaoundé P.O. Box 13033, Cameroon
5 TransVIHMI, University of Montpellier (UM), French Institute of Health and Medical Research (INSERM),
French National Research Institute for Sustainable Development (IRD), Montpellier, France
Correspondence: david.pleydell@inrae.fr

Abstract 1

Since 1976 various species of Ebolavirus have caused a series of zoonotic outbreaks and public health crises
in Africa. Bats have long been hypothesised to function as important hosts for ebolavirusmaintenance, how-
ever the transmission ecology for these viruses remains poorly understood. Several studies have demon-
strated rapid seroconversion for ebolavirus antibodies in young bats, yet paradoxically few PCR studies have
confirmed the identity of the circulating viral species causing these seroconversions. The current study
presents an age-structured epidemiological model that characterises the effects of seasonal birth pulses
on ebolavirus transmission within a colony of African straw-coloured fruit bats (Eidolon helvum). Bayesian
calibration is performed using previously published serological data collected from Cameroon, and age-
structure data from Ghana. The model predicts that annual birth pulses most likely give rise to annual
outbreaks, although more complex dynamic patterns – including skip years, multi-annual cycles and chaos
– may be possible. Weeks 30 to 31 of each year were estimated to be the most likely period for isolating
the circulating virus in Cameroon. The probability that a previous PCR campaign failed to detect Ebola virus,
assuming that it was circulating, was estimated to be one in two thousand. This raises questions such as (1)
what can we actually learn from ebolavirus serology tests performed without positive controls? (2) are cur-
rent PCR tests sufficiently sensitive? (3) are swab samples really appropriate for ebolavirus detection? The
current results provide important insights for the design of future field studies aiming to detect Ebola viruses
from sylvatic hosts, and can contribute to risk assessments concerning the timing of zoonotic outbreaks.
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Introduction 21

Bats have been implicated as reservoir hosts to numerous viruses of zoonotic or animal health impor- 22

tance, including: Hendra virus, Marburg virus, Middle East respiratory coronavirus (MERS-CoV), Nipah virus, 23

severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 and Swine acute diarrhoea syndrome 24

corona-virus (Letko et al., 2020). This list of bat-borne emerging viruses is thought to also include filoviruses 25

of the Ebolavirus genus (Caron et al., 2018; Feldmann et al., 2020; Leroy et al., 2005). Indeed, the filovirus-like 26

VP35 gene is estimated to have been maintained in bat genomes for 13.4 million years (Taylor et al., 2011), 27

which provides evolutionary support for the long-term exposure of bats to filoviruses. However, despite nu- 28

merous outbreaks of Ebola in equatorial Africa since 1976 – where fatality rates typically fall in the range of 29

40-70% (Jacob et al., 2020; Munster et al., 2018) – the hypotheses that (i) bats provide sylvatic reservoirs for 30

Ebola viruses, and (ii) that these reservoirs contribute to spillover events, remain unconfirmed. Moreover, the 31

eco-epidemiology of Ebola virus remains poorly understood, and empirical evidence for bats functioning as 32

primary maintenance reservoirs for Ebola viruses remains non-conclusive (Olival and Hayman, 2014). 33

Serological data shows that some bat species express high seroprevalence for Ebola virus (De Nys et al., 34

2018; Hayman, Yu, et al., 2012). But serology is hard to interpret in bats without positive controls, and there 35

is a paradoxal discrepancy between serological data and viral detection (Caron et al., 2018). Indeed, no Ebola 36

virus has ever been isolated from bats, and only a few individuals of three bat species have tested positive 37

by polymerase chain reaction (PCR) for Ebola virus (Leroy et al., 2005) – a result that remains to be replicated 38

despite extensive sampling. Recent longitudinal monitoring of a straw-colored fruit bat (Eidolon helvum) popu- 39

lation in Cameroon has shown extensive seroconversion of young (juvenile and sexually immature adult) bats 40

over a period of a few months, suggesting active Ebola virus circulation - however, no bat tested positive for 41

Ebola virus by PCR during that study (Djomsi et al., 2022). Another E. helvum study in Guinea provided similar 42

results, with seroprevalence decreasing over the first months of life and increasing again in the first years of 43

adult life, but again, no bats were found to be PCR positive (Champagne et al., Submitted). 44

Modelling is being increasingly used to help understand the interplay between ecological and epidemio- 45

logical dynamics in bats (Glennon et al., 2019; Hayman, 2015; Peel, KS Baker, Hayman, Broder, et al., 2018). 46

Considerable attention has been paid to the effects of seasonal birth pulses on the pool of susceptible indi- 47

viduals and subsequent epidemiological consequences (Hranac et al., 2019; Peel, Pulliam, et al., 2014). For 48

example, strong seasonal patterns in the prevalence of rabies in bats have been attributed to epidemiological 49

consequences of birth pulses (George et al., 2011), and the biannual birth pulses of some Egyptian fruit bat 50

populations are thought to increase the probability of pathogen maintenance (Hayman, 2015). Modelling has 51

also indicated that maternally-derived antibodies can contribute to viral maintenance (Hayman, Luis, et al., 52

2018). 53

In order to explore the enigmatic discrepancy between Ebola serology and virology data, we developed an 54

age-structured epidemiological model that included seasonal birth pulses and waning immunity, and used 55

Bayesian techniques to fit the model to longitudinal E. helvum serology data from Cameroon (Djomsi et al., 56

2022). Our three main objectives were as follows. First, to quantify uncertainty in the parameters and dynam- 57

ics of the model given the seroprevalence data of Djomsi et al. (2022). Second, to quantify the probability of 58

not detecting any PCR positive bats given the sampling scheme of the Djomsi et al. (2022) study. Third, to iden- 59

tify whether seasonal birthing patterns can help identify optimal time-windows for Ebola virus detection. This 60

modelling work has identified potentially important biological parameters that can help explain the observed 61

serology dynamics, and provides insights that can help improve the efficiency of surveillance strategies for 62

detecting Ebola virus in bats. In particular, these analyses provide insights into practical questions concern- 63

ing the establishment of adequate sampling efforts for virus isolation, and raise questions concerning the 64

meaning of positive serological samples from bats. 65
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Material and methods 66

Study site and eco-epidemiological data 67

Our analyses were based primarily on data from a longitudinal serology survey at an E. helvum colony in 68

Yaounde, Cameroon (Djomsi et al., 2022). Although various antigens were used for serological testing in that 69

study, we exclusively used data from the Res1GP.ZEBVkiss antigenic test – a test based on the glycoprotein of 70

Zaire Ebola virus. We selected this data-set because, among all antigenic test
::::
tests used, the Res1GP.ZEBVkiss 71

test generated the highest seropositive rate and the strongest seasonal signal. This data provided information 72

concerning seasonal variation in the presence of four different age classes: pups (P ) - young non-weaned 73

bats that remain attached to their mothers; juveniles (J ) - weaned young, that do not yet display wrist
::::
joint 74

ossification; immature adults (I) - large bats with ossified wrists
:::::
joints but without any sign of sexual maturity; 75

and adult bats (A). Pups were not sampled directly, however, lactating females provided a proxy for their 76

presence. A summary of this data is provided in table 1.

Juvenile Immature Adult Female Adults
Date Neg Pos Neg Pos Neg Pos Lactating Not Lactating

2018-12-07 0 0 2 0 10 8 0 8
2019-01-26 0 0 0 0 45 53 0 42
2019-03-03 0 0 0 0 10 7 1 7
2019-04-02 12 1 0 0 50 24 46 9
2019-05-07 116 1 0 0 21 10 20 6
2019-06-16 71 1 0 0 4 6 0 3
2019-07-17 13 4 67 10 27 11 0 16
2019-09-17 1 0 11 26 3 11 0 3
2019-10-15 0 0 16 22 15 16 0 11
2019-11-15 0 0 13 51 31 20 0 24

Table 1. Summary of E. helvum serology and lactation data from Yaounde, Cameroon. Negative and positive
results for the Res1GP.ZEBVkiss antigenic test are shown for captured bats of three age classes. The number
of captured adult female bats either lactating or not lactating are also shown. Lactation was used as a proxy
for inferring seasonality in the presence of pups. A full description of this data is available in Djomsi et al.
(2022).

77

To help estimate adult mortality rates we used tooth cementum annuli data from 294 adult bats sampled in 78

Ghana (Peel, KS Baker, Hayman, Suu-Ire, et al., 2016). Thus, we assume that the age structures at the sampled 79

colonies in Ghana and Cameroon are equivalent. 80

Mechanistic model 81

A systemof ordinary differential equationswas developed to characterise
::::::
provide

::
a

:::::::::::
deterministic

::::::::::::::
characterisation82

::
of Ebola transmission in an age-structured E. helvum population– this

:
.
::::
This system is depicted graphically in 83

figure 1 and algebraically in equations 1-19. A list of model parameters is presented in table 2. Age structure 84

in the model was defined using the same four age classes recorded in the field (see above), namely: pups (P ); 85

juveniles (J ); immature adults (I); and adult bats (A). Five epidemiological classes were used: protected by 86

maternal antibodies (M ); susceptible (S); infected (I); recovered (R); long-term immunity (L). For simplicity, it 87

was assumed that each year is exactly 52 weeks long, and weeks are used as our time unit throughout (unless 88

stated otherwise). 89

The epidemiologicalmodel assumes that recovered individuals can
:::::::::
susceptible

:::::::::
individuals

:::::::
become

::::::::
infected 90

::
via

::
a
::::::
density

::::::::::
dependent

::::::::
infection

:::::::
process

::::
with

:::::::::::::
homogeneous

::::::
mixing.

::::::::::
Recovered

:::::::::
individuals

:::
are

::::::::
assumed

:::
to 91
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transition to one of two classes – either they loose their immunity and return to being susceptible, or they 92

enter a state of long-term immunity in which anti-bodies are not expressed unless they become re-exposed 93

to the virus. Such a long-term immunity class has proved useful in modelling other bat-virus systems (Brook 94

et al., 2019), and was included to avoid incompatibility between (i) rapid seroconversion among immature 95

adults (and some juveniles), with seroprevalence reaching 60-80% in immatures, and (ii) a global seropreva- 96

lence of just 43% among all tested adults (figure 3). It was assumed that bats in the recovered and maternal 97

antibody classes would express sufficient quantities of antibodies to test seropositive, whereas bats in all 98

other epidemiological classes would test seronegative. We associated two parameters with the long-term im- 99

munity class: pR2L, the proportion of all individuals leaving the recovered class (i.e. loosing antibodies) that 100

acquire long-term immunity, as opposed to loosing immunity and becoming susceptible again; and pL2R, the 101

proportion of exposures to the virus that reinitialise anti-body production in bats with long-term immunity. 102

Given a lack of evidence for vertical transmission for the related Marburg virus in Egyptian fruit bats (Towner 103

et al., 2009), we assumed infectious females could only produce susceptible pups. We also assumed that the 104

number of adult bats still expressing maternal antibodies was negligible, and thus omitted that category to 105

reduce computation time. 106

Figure 1. Schematic diagram of an age-structured MSIRL model used to analyse Ebola serology dynamics in
Eidolon helvum from Yaounde, Cameroon. The total populationN is divided into four age classes – pups (P ),
juveniles (J ), immature adults (I) and adults (A) – and five epidemiological classes – maternal anti-bodies
(M ), susceptible (S), infected (I), recovered (R) and long-term immunity (L). Maturation through the age

classes is controlled by a series of pulse functions (see supplementary materialsannex 1), which lag behind a
seasonal birth pulse. Density dependant mortality rates, µ̃J:::

µ̃Y :
and µ̃A ::

µ̃A, are specified for first-year and
older individuals respectively. Anti-bodies are assumed detectable in individuals of theM and R

compartments and undetectable for all other compartments. It is assumed that all pups from recovered
mothers (p♀RA) start life with maternal antibodies (MP ), and all other pups start life susceptible (SP ).

  

Pups Juveniles Immatures Adults

M

S

I

R

N

L

Seasonal demographic dynamicswere controlled via four pulse functions, which restrainwhen certain birth 107

or maturation processes can or cannot occur. These functions are essentially smoothed (i.e. continuous) step 108

functions that toggle whether or not a given step in the life cycle can bemade at a given time. Each pulse func- 109

tion has three parameters: 1) the pulse start time; 2) the pulse end time; 3) and the rate at which individuals 110

mature, or give birth, during the pulse. Nine of the twelve pulse function parameters were estimated as free 111

parameters, whereas the three maturation pulses were constrained to end two weeks prior to the start date 112

of the preceding pulse function of the following year (see table 2). This two week buffer ensured that individ- 113
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uals joining a given age class could not immediately mature to the following age class. A two week buffer size 114

was chosen so that: 1) the buffer was large enough for overlap between the continuous pulse functions to be 115

negligible; 2) each pulse function was wide enough so that only a negligible number of individuals remained in 116

the age class when the maturation rate returned to zero. Further details of the pulse functions are provided 117

in the annex 1. 118

Parameter Description Prioror function ,
::::::::
function

::
or

::::::::
constant

b(t) Birth rate Pulse function
mP (t) Maturation rate, pups Pulse function
mJ(t) Maturation rate, juveniles Pulse function
mI(t) Maturation rate, immature adults Pulse function
bStart Start of birth pulse Gamma(shape=5, scale=2)
dBirth Duration of birth pulse Gamma(shape=5, scale=1)
bStop End of birth pulse bStart + dBirth

pBirth Prop. females contributing to birth pulse Beta(171.5, 8.1)
p♀ Prop. females in population 0.5
m̂P Maximum pup maturation rate Gamma(shape=1, scale=-log(0.01)/8)
m̂J Maximum juvenile maturation rate Gamma(shape=1, scale=-log(0.01)/8)
m̂I Maximum immature maturation rate Gamma(shape=1, scale=-log(0.01)/8)

mStart
P :::::

mStart
P :

Start of pup maturation pulse Uniform(0, 104)
mStart

J :::::
mStart

J :
Start of juvenile maturation pulse Uniform(0, 104)

mStart
I :::::

mStart
I :

Start of immature maturation pulse Uniform(0, 104)
mStop

P :::::
mStop

P End of pup maturation pulse bStart + 50
:::::::::
bStart + 50

:

mStop
J :::::

mStop
J End of juvenile maturation pulse mStart

P + 50
:::::::::
mStart

P + 50
:

mStop
I :::::

mStop
I End of immature maturation pulse mStart

J + 50
:::::::::
mStart

J + 50
:

µ−1
A Baseline adult life expectancy Gamma(mean=10× 52, sd=4× 52)

RS ::
R Survival ratio (young/adult) Beta(4.7, 1.6)

µY Additional mortality in young bats − log(RS)/52 :::::::::::
− log(R)/52

K Density dependence parameter 100000
N0 Population size at t0 Gamma(shape=500, scale=1000)
pAge0 Prop. of each age class at t0 Dirichlet(0, 0, 1.0, 3.78)
ϕI0 Prop. of immatures inM,S, I,R, L at t0 Dirichlet(0, 1, 1, 1, 1)
ϕA0 Prop. of adults in S, I,R, L Dirichlet(1, 1, 1, 1)
β Transmission rate Gamma(shape=1, scale=10−5)
ρ Antibody acquisition (recovery) rate Gamma(shape=1, scale=1)

α−1
M Duration of maternal antibodies Uniform(0, 20×52)

α−1 Duration of antibody protection Gamma(shape=1, scale=1011)
p

R2L
Prob. long-term immunity after antibody loss Beta(1,1)

p
R2S

Prob. loosing immunity after antibody loss 1 - p
R2L

p
L2R

Prob. antibodies re-acquired on re-exposure Beta(1,1)
Table 2. Parameters, priors and functions used for modelling the dynamics of Ebola virus circulation in the
Eidolon helvum population of Yaounde, Cameroon (see Fig.1). These are presented in groups corresponding to:
the four pulse functions; birth pulse parameters; maturation pulse parameters; mortality parameters; initial
populations; and epidemiological parameters. Parameter estimation for the priors

:::
The

::::::
choice of pBirth, RS

and pAge0 :::::
priors

:
is described in Annex 2 of the supplementary informationannex 2.

The transmission of Ebola virus within the E. helvum population of Yaounde, Cameroon, wasmodelled using
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the following system of ordinary differential equations (ODE):

ṀP = b(t)RAp♀ −MP (µ̃Y +mP (t) + α
M
) (1)

ṠP = b(t)(SA + IA + LA)p♀ + α
M
MP + αp

R2S
RP − SP (µ̃Y +mP (t) + βIΣ) (2)

˙IP = βSP IΣ − IP (µ̃Y +mP (t) + ρ) (3)

ṘP = ρIP + βp
L2R

IΣLP −RP (µ̃Y +mP (t) + α) (4)

L̇P = αp
R2L

RP − LP (µ̃Y +mP (t) + βp
L2R

IΣ) (5)

ṀJ = mP (t)MP −MJ(µ̃Y +mJ(t) + α
M
) (6)

ṠJ = mP (t)SP + α
M
MJ + αp

R2S
RJ − SJ(µ̃Y +mJ(t) + βIΣ) (7)

İJ = mP (t)IP + βSJIΣ − IJ(µ̃Y +mJ(t) + ρ) (8)

ṘJ = mP (t)RP + ρIJ + βp
L2R

IΣLJ −RJ(µ̃Y +mJ(t) + α) (9)

L̇J = mP (t)LP + αp
R2L

RJ − LJ(µ̃Y +mJ(t) + βp
L2R

IΣ) (10)

ṀI = mJ(t)MJ −MI(µ̃Y +mI(t) + α
M
) (11)

ṠI = mJ(t)SJ + α
M
MI + αp

R2S
RI − SI(µ̃Y +mI(t) + βIΣ) (12)

İI = mJ(t)IJ + βSIIΣ − II(µ̃Y +mI(t) + ρ) (13)

ṘI = mJ(t)RJ + ρII + βp
L2R

IΣLI −RI(µ̃Y +mI(t) + α) (14)

L̇I = mJ(t)LJ + αp
R2L

RI − LI(µ̃Y +mI(t) + βp
L2R

IΣ) (15)

ṠA = mI(t)(SI +MI) + αp
R2S

RA − SA(µ̃A + βIΣ) (16)
˙IA = mI(t)II + βSAIΣ − IA(µ̃A + ρ) (17)

ṘA = mI(t)RI + ρIA + βp
L2R

IΣLA −RA(µ̃A + α) (18)

L̇A = mI(t)LI + αp
R2L

RA − LA(µ̃A + βp
L2R

IΣ). (19)

Table 2 provides a summary of model parameters and notation. Note, µ̃A and µ̃Y :::::::::::::::::::::
IΣ = IP + IJ + II + IA

:
is
::::
the

::::
total

::::::
density

:::
of

::
all

:::::::::
infectious

::::
bats,

::::
and

:::
µ̃A::::

and
:::
µ̃Y are density dependant mortality rates for adult and

young bats respectively. Adult mortality was modelled as

µ̃A = µA

(
1 +

J + I +A

K

)
(20)

where µA is the mortality rate in the absence of competition, K is a density dependant parameter that con-
tributes to determining the carrying capacity, and J , I and A provide the total population densities for juve-
niles, immatures and adults respectively. We assumed that, since pups and juveniles depend on theirmothers,
and that immature adults probably make mistakes that mature adults have learned

::::
learn

:
to avoid, then the

mortality rates of non-adults should be equivalent to or higher than that of adults. Therefore, density depen-
dant mortality among young bats was modelled as

µ̃Y = µ̃A + µY , (21)

where µY is the rate of additional mortality among young bats.
:::::
Note,

::::
since

:::
J ,

:
I
::::
and

::
A

::::
vary

::
in

:::::
time,

::
so

:::
do

:::
µ̃A 119

:::
and

::::
µ̃Y .::::::

These
::::::
density

::::::::::
dependant

::::::::
mortality

:::::
rates

:::::
could

:::::::::
therefore

::
be

:::::::::::
represented

:::::
using

::::
the

:::::::
notation

::::::
µ̃Y (t) 120

:::
and

::::::
µ̃A(t),::::::::

however,
::
to

:::::::
simplify

::::::::
notation

:::
we

:::::
adopt

:::
µ̃Y::::

and
:::
µ̃A::

as
:::::::::
shorthand

::::::::::
alternative

::::::::::::::
representations.

:
121

To quantify survival over one year, let SA and SY :::
Let

:::::
SA(t):::

be
:
a
::::::::
survival

:::::::
function

::::
that

::::::
tracks

::::
how

::::
the

::::::
survival

::::::::::
probability

::
of

:::
an

:::::
adult

:::
bat

:::::::::
decreases

::
in

::::::::::
continuous

:::::
time.

::::
This

:::::::
survival

::::::::
function

::
is

:::::::::
described

::
by

::::
the

::::::::
following

:::::::::
differential

::::::::
equation

:

ṠA = −µ̃ASA
:::::::::::

(22)

::::
with

:::
the

:::::
initial

::::::::
condition

::::::::::
SA(0) = 1.

:::
Let

::::
SA::::

and
:::
SY :

denote the annual survival probability
:::::::::::
probabilities for

adult and young (<1 year) bats respectively . For adult bats, consider the following differential equation

ṠA = −µ̃ASA
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where SA(t) tracks how the survival probability changes over time t. Let SA(0) = 1, we can obtain SA by
integrating equation22 1

:
.
::::
One

::::
way

::
to

:::::
obtain

::::
SA :::::

would
:::
be

::
to

::::::::
integrate

::::::::
equation

::
22

:
over a single 52 week year,

i.e.

SSA = exp
(∫ 52

t=0

−̃µA(t)dt
)

where µ̃A(t) is the time-varying
:::::
µ̃A(t)::

is
:::
the

:
density dependant adult mortality

::::::::
(equation

:::
20). Similar argu- 122

ments for young bats give 123

SY = exp
( ∫ 52

t=0
−µ̃Y (t)dt

)
= SA exp(−µY × 52)

SY
::

= exp
(∫ 52

t=0

−µ̃Y (t)dt
)

::::::::::::::::::::

= SA exp(−µY × 52).
:::::::::::::::::::

(23)

Thus, the additive nature of equation 21 permits us to parameterise µY in terms of the ratio of the annual
survival probabilities SY and SA, as follows: ::::::

SY and::::
SA.::

In
:::::
other

::::::
words

RS =
SY

SA

SY

SA
:::

= exp(−µY × 52).

:::
and

:

µY = − 1

52
log(R).

::::::::::::::::

:::
The

::::::::::
advantage

::
of

::::
this

:::::::::::::::
parameterization

::
is

::::
that

::::
data

:::::
were

::::::::
available

:::
for

:::
an

::::::::::
informative

:::::
prior

:::
on

::
R

:::::
(see an- 124

nex 2
:
).

::
In

:::::::
practice:

::::::::::
integration

::
of

::::::::
equation

:::
22

::::
was

:::::::::
performed

:::::::::::
concurrently

:::::
with

:::
the

:::::::::
numerical

:::::::::
integration

:::
of 125

::::::::
equations

:::::
1-19;

:::
SA::::

was
::::::::
obtained

:::::
using

::::::::
equation

:::
25;

::::
and

:::
SY ::::

was
::::::::
obtained

:::::
using

::::::::
equation

:::
23. 126

Bayesian inference 127

A Bayesian approach was used to quantify uncertainty in model parameters, trajectories and derived met- 128

rics.
:::::
Priors

:::
are

::::::::
detailed

::
in

::::
table

::
2
::::
and

::
in annex 2.

:
For each simulation of the ODE system performed during 129

model fitting: state variables were initialized at the start of the year 2017; dynamics were simulated for three 130

years; the ODE solver returned the state variables after each of 520 evenly spaced time steps per year; and the 131

simulated trajectories were confronted with observed field data over the period December 2018 to Novem- 132

ber 2019. Priors are detailed in table 2 and in the .
::::::
Starting

:::
the

:::::::::::
simulations

::
in

:::::
2017

:::::::
allowed

::
a

::
23

:::::::
month 133

:::::::
pre-data

:::::::
burn-in

::::::
period

::
in

::::::
which

:::
the

::::::::::
proportion

::
of

:::::::::
individuals

::
in
:::::
each

::::::::
category

::
at

::::
time

::
t
::::
(ϕIt,::::

ϕAt :::
and

:::::
pAget ) 134

:::::
could

::::::::
converge

::::
from

:::
the

:::::
wide

:::::
range

::
of

::::::::::
possibilities

:::::::::
permitted

::
by

:::
the

::::::::::::
uninformative

::::::
priors

:::::::
towards

::::::::::
biologically 135

::::::::
plausible

::::::::::
proportions

::::::
driven

::
by

:::
the

::::::
model.

:
The following subsections describe the various likelihood functions 136

and penalties used for Bayesian inference, and outline how themodel was used to address questions relating 137

to (1) the mismatch between serology and PCR data, and (2) to the optimal timing of virology studies. 138

Likelihood of age class data 139

The age distribution data (table 1) provides information as to when in the year we can expect to capture
juveniles, immatures and lactating females – where the latter was used as a proxy for pups. It was suspected
that between-class heterogeneity in capture rates could bias the absolute numbers of captures – therefore,

1
:::
Note,

::::::
different

::::
fonts

:::
are

:::
used

:::
for

::::::::
susceptible

::::
adults

::::
(SA),::::

adult
:::::
survival

::::
(SA):::

and
::
the

:::::
annual

::::
adult

::::::
survival

:::::::
probability

::::
(SA).
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the data were not used for calibrating between-class differences in density. Instead, we used this data to infer
how the probability to capture a bat of a given class changes throughout the duration of the sampling period.
Thus, for a given

:::
age class j ∈ {P, J, I}, the likelihood that the total number of captures were distributed

across the various sampling dates as observed in the data was quantified assuming

yj1, yj2, . . . , yjndates ∼ Multinomial
(
pj1, pj2, . . . , pjndates ,

ndates∑
i=1

yji

)
(24)

where ndates is the number of observation dates, yji is the total number of bats of
:::
age

:
class j captured at

the ith observation date and pji is the associated set of probabilities. The probabilities to sample a given pup
(i.e. lactating female), immature or juvenile on the ith sampling date were assumed to be proportional to the
population density predicted by the system of ODEs at sampling time ti, thus,

pPi ∝P (ti)

pIi ∝I(ti)

pJi ∝J(ti)

where
∑ndates

i=1 pji = 1 for any given
:::
age

:
class j. 140

Likelihood of tooth data 141

Tooth cementum annuli data (Peel, KS Baker, Hayman, Suu-Ire, et al., 2016) were used to inform estimates
of adult mortality rates. Let yi ∈ {1, 2, . . . } represent the age of bat i in years. A likelihood for a given bat’s
age was obtained assuming

yi ∼ Geometric(1− S1−
::

SA)

whereSA:::
SA:

is the probability for an adult to survive one year. To calculate this annual survival probability, we
added one more differential equation to the system, to track how survival probability fluctuates throughout
each simulation. Thus, survival was modeled via

Ṡ = −µ̃AS

and we set S(t = 0) = 1. Following each simulation of three years, the annual adult survival probability was
obtained as the ratio of the survival probabilities at the end and beginning of the final year

SA =
S(t = 3× 52)

S(t = 2× 52)
.

:::
and

:::::::::::
penultimate

:::::
years

SA =
SA(t = 3× 52)

SA(t = 2× 52)
,

:::::::::::::::::::

(25)

:::::
which

::
is

:::
the

::::::::::
conditional

:::::::::
probability

:::
for

::
an

:::::
adult

::
to

:::::::
survive

:::
the

::::
third

::::
year

:::::
given

::::
that

:
it
::::::::
survived

:::
the

::::::
second

:::::
year. 142

143

Likelihood of serology data 144

The serology data (table 1) provides information about the number of seropositive individuals (yj(t)) of :::
age

class j ∈ {J, I, A} found in a sample of nj(t) individuals at time t. Thus, we assumed the following likelihood

yj(t) ∼ Binomial
(
pj(t), nj(t)

)
where

pj(t) =
Mj(t) +Rj(t)

Mj(t) + Sj(t) + Ij(t) +Rj(t) + Lj(t)

is the expected seroprevalence for
:::
age

:
class j at time t. 145
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Penalties against demographic growth or decline 146

Due to an absence of longitudinal population census data, there were large uncertainties concerning the
total population size at the beginning and end of the simulation period. We made the simplifying assumption
that the E. helvum population was close to it’s

::
its

:
carrying capacity and was approximately stable. Thus, we

added penalty terms to the Bayesian model, to limit population growth or decline over the short simulation
period and therefore constrain the potential distribution of starting population densities. These penalties
were implemented as follows,

0 ∼Laplace
(
location = log(IEnd/IEarly), scale = log(1001/1000)

)
0 ∼Laplace

(
location = log(AEnd/AEarly), scale = log(1001/1000)

)
where IEarly and IEnd are the total densities of immatures early on, and at the end of, a simulation, and AEarly 147

and AEnd are the total densities of adults early on, and at the end of, a simulation – where "Early" and "End" 148

indicate the first model output for January following one year and three years of simulation respectively. The 149

likelihood imposed
:::::::::::
contribution

::
to

:::
the

::::
total

:::::::::
likelihood

:::::
given by these penalties is greatest when there is zero 150

population growth or decline over the last two years of the three year simulation period. The scale parameter 151

controls the strength of the penalty. These penalties were only applied to the sizes of the adult and immature 152

bat populations, because the other age classes were absent at the beginning of each year. Whilst it could 153

arguably be reasonable to make the simplifying assumption that the total population size was roughly stable 154

over the simulation period, a similar stability assumption for the epidemiological dynamics was considered to 155

be too strong, since too little is known about the dynamics of Ebola in natural reservoirs – thus we did not use 156

equivalent penalty terms to constrain the starting values of the various epidemiological compartments of the 157

model. 158

Markov chain Monte Carlo 159

Bayesian inference was based on Markov chain Monte Carlo sampling. An adaptive Metropolis Hastings 160

block sampler was used to explore the posterior distribution of themodel. Starting values for each parameter 161

were based on the final values obtained from a previous short run of the algorithm. The sampler was run for 162

40 million iterations, with thinning set to 2000, and the first half of the samples were removed as a burn-in 163

period. Thus, we obtained 10000 samples in total. 164

Multi-annual cyclicity and skip years 165

An analysis of the long-termbehaviour of themodel was performed, with the aimof determining if seasonal
patterns in prevalence were likely to be consistent (or not) from one year to the next. For each of the 10000
MCMC samples the ODE system was projected for 1100 years, with the first 1000 years removed as a burn-in
period. The time vector sent to the ODE solver provided a temporal resolution of 10 steps per week. Each
trajectory of infectious adults (IA) over the final 100 years was used to construct a recurrence plot (Marwan
et al., 2007), using a threshold neighbourhood of 1 bat. In other words, each trajectory was used to construct
a matrix with entries

Ri,j = 1(|IA(ti)− IA(tj)| < 1) (26)

where 1 is the indicator function, i and j are indices providing
:::
for location along the time vector, and | · | 166

represents the absolute value. Clearly, the main diagonal of any recurrence plot contains only ones (because 167

i = j for each entry of the diagonal) and is uninteresting. However, any other diagonal containing only ones 168

is interesting, because it informs about periodic (i.e. repeating) dynamics. Thus, we searched for the closest 169

diagonal (to the principal diagonal) containing just ones, in order to identify k, the periodicity in years of any 170

multi-annual pattern in IA. Thus 10000 values of k were tabulated in order to quantify uncertainty in the 171
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periodicity of the epidemiological dynamics. For this tabulation, we pooled all observations of k > 50 years, 172

:::::::::::
50 < k < 100

::::::
years,

::::
and

:::::::
100 < k,

:
to avoid potential false positives near the corners of the recurrence plots 173

:::
and

::
to

:::::::
identify

:::::::::
potentially

:::::::
chaotic

::::::::::
trajectories. 174

For any simulation where we identified that k > 1 we searched for skip years, which we defined as any 52 175

week period within which the density of infectious adults (IA) consistently remains below one. Thus, when 176

tabulating the various observed values of k we also tabulated the frequency of observing skip years as a 177

function of k. 178

Probability of not sampling an infectious bat 179

A key aim of this work was to quantify whether or not we should expect to see PCR positive bats in a typical
sample given the fitted model of Ebola transmission in E. helvum. Let Nj(t) ::::

Nj(t):represent the sample size
for bats of age class j obtained during a sampling campaign performed in week t – the probability to have
zero infectious bats in this sample is:

p(Ij(t) = 0|Nj(t)
::::

) =
(
1− Ij(t)

Mj(t) + Sj(t) + Ij(t) +Rj(t) + Lj(t)

)
Nj(t)Nj(t)

::::
(27)

where Ij(t) is the number of infectious bats in the sample. We considered that Nj(t) = 25
:::::::::
Nj(t) = 25

:
is a 180

fairly typical scenario in a given sampling campaign, and thus plotted the evolution of p(Ij(t) = 0|Nj(t) = 25) 181

::::::::::::::::::::
p(Ij(t) = 0|Nj(t) = 25)

:
in time for adult and immature bats, to provide an indication of when in the year 182

would be an optimal time for sampling if viral extraction was the aim. 183

Similarly, we also calculated the probability of having not captured a single infectious bat given all the bats
tested by PCR throughout the entire study,

p(I = 0|NJ
::

,NI
::

,NA
::

) =
∏

t∈TObs

∏
j∈{J,I,A}

(
1− Ij(t)

Mj(t) + Sj(t) + Ij(t) +Rj(t) + Lj(t)

)
Nj(t)Nj(t)

::::
(28)

where I is the total number of infectious bats sampled during the study, Nj ::
Nj:

is the vector indicating how 184

many bats of age class j were sampled in each sampling campaign, and TObs is the set of times for all of the 185

observation campaigns. 186

Implementation 187

All calculations were performed in R (R Core Team, 2022) version 4.2.1. Numerical integration of the ODE 188

system
:::::::::
(equations

:::::
1-19

:::
and

::::
22) was performed using the lsoda function in the deSolve package (Soetaert 189

et al., 2010). Functions for the derivatives and Jacobian of the ODE systemwere coded in C. Bayesian inference 190

was performed in NIMBLE (de Valpine, Paciorek, et al., 2022; de Valpine, Turek, et al., 2017), and the function 191

nimbleRcall was used to call lsoda from inside NIMBLE. The package nimbleNoBounds (Pleydell, 2023) was 192

used for improving the efficiency of adaptive Metropolis-Hastings sampling near the bounds of the param- 193

eter space. The R
:
R package CODA (Plummer et al., 2006) was used to perform convergence diagnostics on 194

the MCMC output, and to provide the mean, median, 95% credibility interval and effective sample size (ESS) 195

for each parameter. The effective sample size, which estimates the number of independent samples per pa- 196

rameter while accounting for auto-correlation, was calculated using the function effectiveSize. Whilst the 197

system of ODEs was defined in continuous time, it is common for ODE solvers to discretise
::::::::
discretize

:
time – 198

for each simulation lsodawas provided a time vector with intervals of 0.1 weeks to define when estimates for 199

the state of the system were required. To economise on memory allocation we configured NIMBLE to store 200

and use the state of the dynamic system at weekly time intervals. 201
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Results 202

Inference from parameters 203

The posterior mean, median and 95% credibility intervals (shown in parentheses below) of each parameter, 204

alongwith the annual survival and effective sample sizes (ESS) estimates obtained from 10000MCMC samples, 205

are presented in table 3. Twelve of the parameters were associated with ESS scores of 10000 or higher. The 206

lowest ESS estimates were associatedwith the inverse of antibody loss rate (ESS(α−1) = 2289), the proportion 207

of recovered individuals obtaining long-term immunity (ESS(pR2L) = 6024), and the proportion of adults with 208

long-term immunity at the start of each simulation (ESS(p0(L|Ad)) = 7133). 209

The birth pulse is expected to start in the eighth week of the year and last nine (95% CI: 6.6− 10.7) weeks. 210

The three consequentmaturation pulses are expected to start in weeks 12, 24 and 45 respectively. The ranges 211

of the 95% credibility intervals for the four pulse function start times were (in chronological order) 0.76, 0.3, 212

1.5 and 1.9 weeks respectively. Annual survival probabilities were estimated as 39% (33% − 46%) and 76% 213

(74%−79%) in young and adult bats respectively. The estimated recovery rate, ρ = 0.67 (0.37−1.5), indicates 214

that the expected duration of infections was 1.5 weeks (5 days – 19 days). Recovered bats are expected to 215

produce antibodies for 75 (48 − 135) weeks, and maternal antibodies are expected to last 1.1 (0.36 − 2.3) 216

weeks. The estimates of pR2L indicate that roughly two thirds of recovered individuals pass to the long-term 217

immunity class, although uncertainty was high (0.24−0.92). Only 17% of infectious attacks on individuals with 218

long-term immunity re-initiate anti-body production, although uncertainty is large (0.7%− 47%). 219

A comparison of age-structure seasonality in the data and the model is presented in Fig. 2. The modelled 220

trajectory of pup presence (red) closely follows the observed seasonal patterns in the number of lactating 221

females (black). The model slightly underestimates the proportion of juveniles in May, but otherwise matches 222

the juvenile data well - i.e. with overlap between the credibility intervals generated from the data and from 223

the model. Seasonality in the presence/absence of immature adults is characterised well, although some 224

considerable fluctuations in densities remain unexplained by the model. Similarly, there was considerable 225

overlap between the credibility intervals calculated from the model and from the tooth-age data, albeit with 226

some notable outliers among young adult bats. 227

Seroprevalence dynamics 228

Comparisons of modelled and observed seroprevalence, in juvenile, immature adult and adult bats, are 229

presented in Fig 3. The credibility intervals of observed and modelled seroprevalence overlap at all sampling 230

dates. In juveniles and immature adults there is a large drop in seroprevalence when the maturation pulse 231

functions permit the re-population of those age classes – by contrast, in adults there is a small increase in 232

seroprevalence at the time when immatures start becoming adults. Seroprevalence increases in juveniles and 233

immature adults during midsummer, with median seroprevalence rates being just 0.4% (0.05% - 1.8%) and 234

0.9% (0.007% - 3.8%) inweeks 22 and 24 (of 2019) respectively, and reaching 68% (60% - 74%) inweek 40. Whilst 235

this peak in seroprevalence is synchronised for the two classes, the density of juveniles is already reaching 236

zero by that time, whereas the density of immature adults is reaching its maximum. A summertime upward 237

trend is also observed in the seroprevalence of adults, with a median seroprevalence of 35% (29%-41%) in 238

week 25 rising to 51% (43% - 62%) in week 38. The trajectories of both observed andmodelled seroprevalence 239

from early April to early May suggest that seroprevalence in juveniles drops considerably during this period – 240

a continuation of the drop initiated one month earlier by the initiation of weaning in week 12. 241

Period and predictability of long-term dynamics 242

The periods of multi-annual cyclicity in the dynamics of infectious adults (IA), identified using recurrence 243

plots from10000 simulations, are presented in table 4. Eighty nine percent of simulations resulted in dynamics 244

with a period of one year – in these cases, the timing of the annual peak remained identical from one year to 245
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Figure 2. Comparison of model trajectories to age-structure data for Eidolon helvum in Yaounde, Cameroon
(top row and bottom left), and of modelled adult survival to age estimates of adults based on tooth annuli
data from Ghana (Peel, KS Baker, Hayman, Suu-Ire, et al., 2016).
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Figure 3. Seroprevalence data and estimates for 2018-2019. The mean and 95% credibility intervals for the
seroprevalence data are shown as black dots and whiskers respectively. The median and 95% credibility inter-
vals for the modelled seroprevalence are shown as dotted lines and red bands respectively. 95% credibility
intervals for the density of individuals in each class are shown in beige.

12



Parameter Mean 2.5% Median 97.5% ESS
bStart 8.04E+00 7.67E+00 8.04E+00 8.43E+00 10000
dBirth 9.12E+00 6.62E+00 9.31E+00 1.07E+01 7372
pBirth 9.54E-01 9.19E-01 9.56E-01 9.80E-01 10000
m̂P 6.41E-01 3.31E-01 6.10E-01 1.11E+00 10000
m̂J 4.58E-01 3.22E-01 4.37E-01 7.04E-01 10375
m̂I 1.44E+00 7.71E-01 1.33E+00 2.75E+00 10000
mStart

P 1.25E+01 1.19E+01 1.25E+01 1.28E+01 10000
mStart

J 2.40E+01 2.30E+01 2.39E+01 2.55E+01 9381
mStart

I 4.58E+01 4.50E+01 4.57E+01 4.69E+01 11342
µ−1
A 1.24E+03 1.09E+03 1.24E+03 1.41E+03 9532

RS ::
R 5.12E-01 4.16E-01 5.10E-01 6.19E-01 9199

N0 4.92E+05 4.51E+05 4.92E+05 5.36E+05 9711
p0(Im) 2.09E-01 6.65E-03 1.67E-01 6.22E-01 10341
p0(S|Im) 2.43E-01 8.60E-03 1.99E-01 7.02E-01 10000
p0(I|Im) 2.60E-01 8.90E-03 2.17E-01 7.15E-01 9662
p0(R|Im) 2.45E-01 7.48E-03 2.00E-01 7.01E-01 10000
p0(L|Im) 2.52E-01 8.89E-03 2.07E-01 7.05E-01 10000
p0(S|Ad) 2.38E-01 6.09E-03 1.81E-01 7.18E-01 10000
p0(I|Ad) 2.76E-01 1.24E-02 2.41E-01 7.24E-01 9037
p0(R|Ad) 2.35E-01 7.17E-03 1.89E-01 6.91E-01 10000
p0(L|Ad) 2.51E-01 8.53E-03 2.07E-01 7.22E-01 7133

β 5.57E-06 3.08E-06 4.96E-06 1.21E-05 7574
ρ 6.77E-01 3.71E-01 6.06E-01 1.49E+00 7540

α−1 7.51E+01 4.81E+01 6.96E+01 1.35E+02 2289
α−1
M 1.11E+00 3.60E-01 1.04E+00 2.28E+00 9575

pR2L 6.33E-01 2.47E-01 6.54E-01 9.20E-01 6024
pL2R 1.70E-01 7.67E-03 1.47E-01 4.71E-01 9426

SY ::
SY:

3.91E-01 3.27E-01 3.90E-01 4.60E-01 9198
SA ::

SA:
7.65E-01 7.42E-01 7.65E-01 7.87E-01 9474

Table 3. Summary of marginal posterior distributions for each parameter in the Ebola-E.helvum model. The
mean, median and 95% credibility intervals for each parameter are presented, along with the effective sample
size (ESS) estimated using the effectiveSize function of R package CODA.

the next. Among the 11% of simulations which exhibiting more complex dynamics, 31% exhibited skip years. 246

Nearly nine percent of simulations resulted in biennial (k = 2) cycles, 24% of which exhibited skip years. Sixty 247

seven simulations resulted in four-year cycles, with 94% exhibiting skip years. Nineteen simulations exhibited 248

k > 4 and k < 50. Seventy three simulations exhibited k > 50, with 48% exhibiting skip years. Examples of 249

the types of trajectories possible under each value of k are presented in Fig. 4. 250

The timing of the annual peak in infectious adults, and the relation ship between that timing and the size 251

of the peak, is presented in Fig. 5. An annual peak in the density of infectious adults is most likely in weeks 252

30 - 31 (p=0.63), in weeks 17 - 27 (p=0.05), or in weeks 48 - 52 (p=0.045). Weeks 21, 25 and 27 are associated 253

with the greatest expected outbreak sizes (24610, 24411 and 24528 infectious adults respectively), despite 254

bi-modality in outbreak size during that period of the year. The expected outbreak size in weeks 30 and 50 255

are 8128 and 9618 respectively. 256
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Figure 4. Example long-term trajectories of infectious adults under various values of period k. From top to
bottom, k equals 1, 2, 4, 6, 8, 48 and k > 100 respectively. Vertical grey, and blue, lines depict the start of
each year, and the period k, respectively. Skip years (any 52 week period without an outbreak) are evident in
several examples. A higher (than one bat) threshold in the recurrence plot definition (Eq.

:::::::
equation

:
26) could

clearly result in k = 8 and not k = 48 in the sixth example. The dynamics in the final example appear to be
chaotic. 14



Period k Frequency Frequency
(years) with skips

1 8938 0
2 899 219
4 67 63
5 1 0
6 5 4
7 1 0
8 7 7
10 1 1
14 1 0
25 1 0
28 1 0
48 1 1

51-99 25 8
≥100 48 27
Extinct 4 N.A.
Total 10000 330

Table 4. Recurrence plot analysis results, providing the frequency distribution for various values of k, the pe-
riod (in years) of dynamics in the density of infectious adults (IA), and the frequency of observing skip years
in those patterns. Since recurrence plots were constructed from 100 year simulations, the maximum period-
icity permitting at least one whole replication of a dynamic cycle was 50 years. Thus, we pool all simulations
providing just partial evidence for periodicity in the 50-99 range. Similarly, we pool all simulations indicating
k ≥ 100, many of which are likely to have been chaotic. Four simulations resulted in extinction of the virus.

Probability of not sampling an infectious bat 257

Seasonality across 2019 in the probabilities to not have an infectious individual in a sample of 25 adults 258

and 25 young bats are represented graphically in figure 6. The expected values of these probabilities were 259

minimised in week 31 in both young and adult bats, and were 0.02 (95% CI: 0.0039 – 0.069) and 0.48 (0.29 – 260

0.70) respectively. 261

The probability to not have an infectious bat in the samples tested by PCR in the (Djomsi et al., 2022) study 262

was 0.00052 (6.6× 10−9 – 4.2× 10−3). These probabilities are greatest during the first four to five months of 263

the year. Uncertainty in these probabilities is greatest in late summer and early autumn. 264

Discussion 265

Model overview and fit 266

The current work presents a Bayesian analysis of an age-structured epidemiological model of Ebolavirus 267

transmission in Eidolon helvum. The model simulates both demographic and epidemiological dynamics, and 268

was calibrated to ecological and serological data collected previously in Cameroon (Djomsi et al., 2022) and age 269

structure data from Ghana (Peel, KS Baker, Hayman, Suu-Ire, et al., 2016). A key component of the model is a 270

series of four seasonally dependant pulse functions, which control when females can produce pups, andwhen 271

maturation between successive age classes can occur. Uncertainty in the estimated starting times of those 272

pulse functions was low, with the 95% credibility interval being less than two weeks wide in all four cases. 273

Some outliers in the age-structure data were observed (Fig. 2) and are likely linked to neglected ecological 274

mechanisms, such as heterogeneity in dispersion patterns, food availability and survival. Nevertheless, the 275
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Figure 5. Seasonal trend in the probability that the annual peak in infectious adults falls within a given week
(left), and the relationship between the timing and size of outbreak peaks (right). These results are based on
the final 100 years of 10000 simulations, each 1100 years in length. The probability of the peak given the
week of the year was derived as the expected value derived from these one million years of simulated output
(black line, left plot). The frequency distribution for the timing and size of peak IA density for each of these
one million years of simulated output is represented via a white-green-red colour scale (right plot), with the
weekly mean and 95% credibility intervals represented as solid and dashed lines respectively.

model trajectories provide a succinct summary of trends observed in both the age-structure and serology 276

data – the most notable trend being the sharp increase in seroprevalence in late summer (Fig. 3). 277

Inference from parameter estimates 278

Our analyses indicate that, on average, 76% of adults and 39% of young bats survive each year. Infections 279

are expected to last one and a half weeks. Maternal antibodies are expected to provide protection for just 1.1 280

weeks on average, thus the annual birthing pulse leads rapidly to growth in the pool of susceptible individuals, 281

which in turn typically leads to increased transmission and seasonal outbreaks. Somewhat similar patterns of 282

maternal antibody loss, followed by acquisition as young adults, and with seroprevalence in adults stabilising 283

at roughly 60%, have also been reported for Lagos bat virus and henipavirus in E. helvum (Peel, KS Baker, 284

Hayman, Broder, et al., 2018) – however, the mean duration of protection from maternal antibodies in that 285

study was estimated to be half a year. Following experimental infections with canine distemper virus in adult 286

female Pteropus hypomelanus and natural infections of Hendra virus in adult female Pteropus alecto serological 287

tests could still detect maternal antibodies in pups of up to 7.5 and 8.5months of age (Epstein, ML Baker, et al., 288

2013). The duration of protection frommaternal antibodies estimated in the current study does appear to be 289

low compared to estimates from other studies for other viruses, however, uncertainty was low (despite a very 290

uninformative prior) which suggests that the result was really driven by the observed data. Further studies 291

could be useful to verify why maternal antibodies play an apparently less important role here, compared to 292

other host-virus systems. 293

Here, the expected duration of antibodies in recovered bats was estimated to be 75 weeks, or possibly 294

as much as 135 weeks – although again, this duration of projection from antibodies is shorter than the four 295

years and twelve years estimated for henipavirus and Lagos bat virus respectively in Peel, KS Baker, Hay- 296

man, Broder, et al. (2018). Given the shorter half-life of detectable antibodies in the adult bats of the current 297

study, it is perhaps less surprising that maternal immunity appears to be shorter here than in other studies. 298
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Figure 6. Probability of not capturing an infectious bat in a sample of 25 pre-adult (left) or adult (right) bats,
across 2019. Grey vertical lines indicate weeks at which bats were captured for PCR analysis, with a mean
sample size of 25.

The posterior distribution of pR2L indicated that the majority of individuals loosing antibodies are expected 299

to enter a form of long-term immunity – and 97.5% of samples indicated pR2L > 0.24, thus some form of 300

long-term immunity appears to be likely. This result replicates modelling results of Brook et al. (2019), who 301

described a similar phenomenon in henipavirus transmission in Eidolon dupreanum, Pteropus rufus and Rouset- 302

tus madagascariensis fruit bats in Madagascar. Moreover, experimental infections suggest that Egyptian Fruit 303

Bats (Rousettus aegyptiacus) continue to exhibit long-term protection to Marburg virus 17-24 months after an 304

original infection despite waning expression of virus-specific IgG antibodies (Schuh, Amman, TK Sealy, et al., 305

2017). 306

Probability of serology-PCR mismatch 307

A key aim of the current work was to explore an apparent mismatch between seroprevalence data – which 308

suggest Ebola-related virus circulation in juvenile and sexually immature bats – and the results of PCR tests – 309

which have failed to detect a positive sample among the 456 oral and rectal swabs tested from 366 bats (152 310

juveniles and 214 immature adults)(Djomsi et al., 2022). Here the probability to not have an infectious bat 311

among all the samples tested by PCR was estimated to be 0.00052 (95% CI: 6.6 × 10−9 - 4.2 × 10−3), which 312

confirms a paradoxical mismatch between the results of the serology and PCR tests. 313

The circulation pattern observed in the serology data, and replicated in our model, is apparently driven 314

by seasonal pulses of young susceptible bats entering the population, fueling an annual resurgence of viral 315

circulation, and playing a key role in viral persistence. That birthing patterns play an important role for con- 316

tributing to the timing of outbreaks has been reported for various other host-pathogen systems (Cappelle, 317

Furey, et al., 2021; Jolles et al., 2021; Mariën et al., 2020; Peel, Pulliam, et al., 2014), which supports the argu- 318

ment that the seasonal patterns observed in the serology data really are linked to viral circulation. However, 319

in the absence of confirmed positive control samples for ebolaviruses in bats the calibration of a serological 320

test is challenging, therefore there is a risk that a low cut-off value could have inflated the frequency of false 321

positive results. Indeed, Djomsi et al. (2022) tried several methods to identify a cut-off value – however, even 322

the most stringent of those cut-offs suggested the presence of bats that were seropositive to ebolaviruses 323

and seasonality in transmission. Cross-reactivity between different ebolaviruses has been documented in 324

humans (Diallo et al., 2021) and in experimentally infected Rousettus aegyptiacus, where limited cross reactiv- 325
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ity with other filoviruses was also documented (Schuh, Amman, TS Sealy, et al., 2019). Such results suggest 326

that the serological signal observed in that study did come from the circulation of Ebola-related viruses and 327

not other filoviruses. Nevertheless, false positive reactivity with other pathogens cannot be excluded for the 328

serological assay used in our study, which may explain why all PCR tests remained negative – i.e. the viruses 329

actually circulating and causing positive serology in E. helvummight not be in the detection range of the pan- 330

filovirus PCR of Djomsi et al. (2022). However, other factors could also explain the lack of positive PCR test 331

results, even if Ebola-related viruses actually are circulating within the bat population. 332

One alternative possibility is that low sensitivity of the PCR assay may have lead to many false negative test 333

results and may therefore explain the mismatch between the serological and PCR data. PCR assays designed 334

to detect viral families may have lower sensitivity than PCR targeting specific viruses. For example a Bomabali- 335

virus-specific real-time PCR assay detected an addiational postivie sample than the filovirus ‘family level’ cPCR 336

assay used by Goldstein et al. (2018). 337

Furthermore, samples taken from infectious sylvatic bats are likely to have very low viral loads compared to 338

experimentally infected bats or sick naturally infected humans for whom the PCR assays have been designed. 339

If PCR sensitivity is an issue, then developing a more sensitive PCR should help, so long as it is not associated 340

with a decrease in specificity. Indeed, if unknown Ebola-related viruses are actually circulating in the popu- 341

lation, designing a specific PCR assay would prove challenging. Moreover, future studies that succeeded to 342

identify or isolate those viruses would greatly clarify the epidemiological picture. 343

Finally, another potential explanation for the negative PCR results, despite the apparent circulation of Ebola- 344

related viruses, may be the absence of viral excretion in the rectal and oral swab samples collected. During 345

an experimental inoculation of Rousettus aegyptiacus with Ebola virus, none of 36 swab samples taken 3-10 346

days post infection tested positive by PCR, although Ebola RNA was detected in the blood of one bat and the 347

lungs and liver of another (Paweska et al., 2016). Transmission routes other than the fecal-oral or oral-oral 348

routes may be involved in the transmission of Ebola-related viruses in E. helvum. In rare cases Ebola virus has 349

been detected in various samples from humans, and a sexual route of transmission has been demonstrated 350

(Christie et al., 2015; Mate et al., 2015; Thorson et al., 2016). The large majority of samples taken from bats so 351

far have been oral and rectal swabs. Taking multiple samples from bats, including organs may help to clarify 352

this point. Ethical questions would arise from such a protocol involving bat euthanasia, and the balance be- 353

tween improving our understanding of the ecology of ebolaviruses and animal well-being should be discussed 354

by ethics experts. 355

Complex dynamics and optimal timing for sampling 356

A key aim of the current study was to predict the optimal timing for identifying or isolating the virus(es) 357

responsible for the sero-conversions observed in E. helvum. Clearly, when planning field sampling schemes, 358

it can be highly beneficial to have as complete an understanding as possible concerning the complexity of 359

viral dynamics in a sylvatic host population. Some bat-borne zoonotic viruses are known to exhibit complex 360

multi-year inter-epizootic periods, which have been attributed to interactions between population density 361

changes, waning immunity, and viral recrudescence (Cappelle, Hoem, et al., 2020; Epstein, Anthony, et al., 362

2020). Results from our long-term simulations indicate a degree of uncertainty regarding whether or not 363

complex multi-annual dynamics in the number of infectious bats are to be expected. Ten percent of our 364

simulations suggest that the period of cyclicity could be greater or equal to two years, and 31%of that subset of 365

simulations suggest that theremay be periods of twelvemonths ormorewhere prevalence rates remain close 366

to zero. Such "skip years" are a well known phenomenon in mathematical epidemiology (Stone et al., 2007; 367

Subramanian et al., 2020; Zhao et al., 2018) and arise when the size of the susceptible population remains 368

below a threshold required for an outbreak for prolonged periods of time. Clearly, whether or not skip years 369

occur is an important question for field-virologists interested in sampling sylvatic hosts for virus isolation. Here 370

the probability that the system exhibits skip years was estimated as 0.033, which is low but not completely 371

negligible either. 372
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Actually, almost 90% of our long-term simulations suggested that the dynamics of ebolavirus in E. helvum in 373

Cameroonmay be relatively simple. Themost likely scenario appears to be: one outbreak occurs per year; the 374

size of those outbreaks is somewhat consistent; and the peak of each outbreak likely occurs during weeks 30 375

and 31 of the year (p=0.63). Thus, a sampling campaign centered at these dates would most likely be optimal. 376

However, our uncertainty analysis does not eliminate the possibility ofmore complex patterns where the peak 377

in the number of infectious bats could occur at any time after the first three months of the year, and where 378

the size and timing of outbreaks are related. Given this uncertainty in the timing and size of outbreaks, it could 379

also be worth sampling in weeks 17-27, because although the probability to have an outbreak in this period 380

is lower, the size of outbreaks predicted in this period can be greater. Any outbreaks occurring after week 35 381

would only generate low prevalence rates, thus it could be challenging to isolate the virus during this period. 382

These results can be used to target periods when ebolavirus circulation can be expected to be greatest, and 383

to help optimise the sample sizes required to have a high probability of sampling at least one infectious bat – 384

which can help limit the number of bats euthanized for the purpose of viral isolation. 385

Limitations and future research 386

Various limitations should be kept in mind when interpreting the results presented in the current work. 387

For example, our modelling neglects: stochasticity in population dynamics, transmission and recrudescence 388

(Muñoz et al., 2022; Peel, Pulliam, et al., 2014); spatial dynamics and migration (Richter and Cumming, 2006); 389

between-year variation in the timing and success of birth pulses (Adole et al., 2016); potential long-term car- 390

riers (Forrester, 2018); temporal changes in environmental stress that may affect susceptibility (Lafferty and 391

Holt, 2003); and age-dependant heterogeneity in contact rates (Rohani et al., 2010). Future modelling stud- 392

ies should consider using sensitivity analysis to assess whether or not neglecting such mechanisms can have 393

important consequences on the long-term trajectories of disease transmission and on the optimal timing of 394

sampling. Moreover, the current work has focused on one host, one serological test and is based on just over 395

one year of field data. We cannot eliminate the possibility that multiple Ebola-related viruses contributed to 396

the observed trends in serology, because of a lack of specificity of the serological tests. The limitations of 397

this study highlight the importance of conducting long-term field monitoring, for the calibration of models, 398

assessing their predictions and for fully elucidating the complex dynamics of Ebola-related viruses in sylvatic 399

host communities. 400

Conclusions 401

The current paper presents modelling work that addresses a paradoxical observation in straw coloured 402

fruit bats, where young bats exhibit rapid seroconversion for ebolavirus antibodies whilst confirmation by 403

PCR remains elusive. The probability of this contradictory observation is estimated to be one in two thousand. 404

The potential causes of this mismatch have been discussed and remain the focus of future research. This 405

work provides novel insights in to the nature of the seasonality of ebolavirus transmission in fruit bats and 406

provides predictions which can help with the design of future field programs for isolating circulating Ebola 407

viruses. 408
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Supplementary informationavailability 420

Details regarding the pulse functions used to control seasonality are provided in Annex
:::::
annex

:
1. Details 421

regarding the parameterisation of priors for three parameters are provided in Annex
::::::
annex 2. 422

Annex 1: Pulse functions 423

Seasonal flow of individual bats through the four-class life cycle model was controlled via a series of four
pulse functions. The scaled product of two logistic curves was used to define a single pulse, and modulo
arithmetic was used so that this pulse could be applied to an unlimited number of years. Thus, the rate of a
given life-cycle process (i.e. birth, or maturation) was modelled as a function of time t as follows:

r(t) = rMax
1

1 + exp(γX1(t))

1

1 + exp(γX2(t))
(29)

with
X1(t) = ((tStart − t+ δ) mod 52)− δ, (30)

X2(t) = ((t− tStop + δ) mod 52)− δ (31)

and
δ =

52 + tStop − tStart − 10−2

2
, (32)

where tStart gives the start of the pulse (i.e. the centrality parameter for the first logistic curve), tStop gives the 424

end of the pulse (i.e. the centrality parameter for the second logistic curve), modulo arithmetic permits the 425

recycling of the pulse function over multiple years, δ provides a shift that eliminates artefacts arising from 426

edge effects under most biologically reasonable combinations of parameters, and γ is a shape parameter 427

controlling how rapidly the rate r(t) passes from zero to rMax, and back again. In practice we fix γ at ten. Note, 428

tStop > tStart. 429

For the birth pulse function, rMax represents the within-season birth rate, which we note as bMax, which we
define as

bMax =
pBirth
dBirth

(33)

where dBirth is the duration of the birth pulse, and pBirth is the proportion of females expected to give birth (to 430

a single pup) during the birth pulse. 431
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Annex 2: parameterisation for three
::
of

:
priors 432

In the follwoing
::::
Prior

:::::::::::
distributions

:::
for

::
all

:::::
fitted

::::::::::
parameters

::::
are

:::::::::::
summarised

::
in

::::
table

::
2
::
of

:::
the

:::::
main

::::
text.

:::
In 433

:::
the

::::::::
following subsections we outline how we parameterised priors for the parameters pBirth,RS and pAge0 :::

our 434

::::::
choices

:::
for

::::
how

:::
the

:::::
prior

:::::::::::
distributions

:::
for

:::::
each

::
of

:::
the

:::::::::
estimated

::::::
model

::::::::::
parameters

::::
were

:::::::::
specified.

::::::::
Typically 435

:::
our

:::::::
choices

:::
for

::::
prior

:::::::::::
distributions

:::::
were

::::::
classic.

::::
For

::::::::
example:

:::
the

:::::
beta

::::::::::
distribution

::::
was

::::
used

::
to

::::::
model

::::::
scalar 436

::::::::::
proportions;

::::::::
Dirichlet

:::::::::::
distributions

::::
were

:::::
used

::
for

:::::::
vectors

::
of

::::::::::
proportions

::::
that

::::
sum

::
to

::::
one;

:::
and

:::::::
gamma

:::::::::::
distributions437

::::
were

:::::
used

::
as

:::::
priors

:::
for

:::::::
positive

::::::
scalars

:::::
such

::
as

:::::
rates

::
or

:::::::
sejourn

:::::
times.

::::::
Recall,

:::
an

::::::::::
exponential

::::::::::
distribution

::
is
::
a 438

::::::
gamma

:::::::::::
distribution

::::
with

:
a
::::::
shape

:::::::::
parameter

::
of

::::
one.

:
439

:::::
Prior

::::
for

:::::
bStart:::::

and
:::::
dBirth 440

:::
For

:::
the

:::::
start

::::
and

::::::::
duration

::
of

::::
the

::::
birth

::::::
pulse

::::
(bStart::::

and
:::::
dBirth:::::::::::

respectively)
:::::::::::::::
semi-informative

::::::
priors

:::::
were 441

::::::
chosen

::
to

:::::::::
represent

:::
the

::::::::::
knowledge

::::
and

:::::::::::
uncertainties

:::
of

::::::::
ecologists

:::::::
familiar

:::::
with

:::
the

::::::::
E.helvum

:::::::::
population

:::
of 442

::::::::
Yaounde. 443

:::
For

:::
the

:::::
start

::
of

:::
the

:::::
birth

:::::
pulse,

:::::
bStart,::

a
::::::
gamma

:::::::::::
distribution

::::
was

::::::
chosen

::::
with

:::
an

::::::::
expected

:::::
value

::
of

:::
10

::::
and 444

:
a
::::::::
standard

::::::::
deviation

:::
of

::::::::::::
approximately

::::
4.5.

::::
This

::::::::
provides

::
a

::::::::::
distribution

::::
with

:::::::::::::
approximately

::::
90%

::
of

:::
its

:::::
mass 445

:::::::::
distributed

::::::::
between

:::
the

:::
4th

::::
and

::::
18th

:::::
week

::
of

::::
the

::::
year.

:
446

:::
For

:::
the

::::::::
duration

::
of

::::
the

::::
birth

::::::
pulse,

:::::
dBirth,::

a
:::::::
gamma

::::::::::
distribution

::::
was

::::::
chosen

:::::
with

::
an

:::::::::
expected

:::::
value

::
of

::
5 447

:::
and

::
a

::::::::
standard

::::::::
deviation

::
of

:::::::::::::
approximately

::::
2.2,

::::::::
providing

::
a

::::::::::
distribution

::::
with

:::::::::::::
approximately

::::
90%

::
of

:::
its

:::::
mass 448

:::::::::
distributed

::::::::
between

:
2
::::
and

::
9

:::::
weeks. 449

Prior for pBirth 450

The proportion of females giving birth each year, pBirth, was modelled using
::::
data

::::
from

:
Hayman, McCrea,

et al. (2012) and a beta-binomial model,
:::::
which

::
is

:
a
:::::::
natural

::::::
choice

:::
for

::::::::::
modelling

::::::::::
proportions

:::::
with

::::::
binary

::::
data.According to that paper, the expected value and 95% confidence interval of pBirth are 0.96 and (0.92,0.98)
respectively. We sought to identify the parameters of a beta distribution that would minimise the L2 norm of
errors between fitted values and these three data points. Using the optim function in R, we identified that

pBirth ∼ Beta(171.49, 8.13).

For further details, see our
:::
the script hayman.R. 451

Prior forRS ::::
m̂P ,::::

m̂J ::::
and

::::
m̂I 452

:::
The

:::::::::
maximum

::::::::::
maturation

:::::
rates

::
of

:::::
pups,

:::::::
juveniles

::::
and

:::::::::
immatures

:::::
(m̂P ,:::

m̂J::::
and

:::
m̂I ):::::

were
::::
given

:::::::::::
exponential 453

::::
prior

::::::::::::
distributions,

::::
with

:::
the

:::::
scale

:::::::::
parameter

:::
set

:::
so

:::
that

:::
an

::::::::
expected

::::
99%

::
of

::::::::::
individuals

:::::::::
completed

::::
the

:::::
given 454

::::
stage

:::
of

:::
the

::::
life

:::::
cycle

:::::
within

:::::
eight

:::::::
weeks.

::::
The

:::::::::
expected

::::
time

:::
for

:::::
99%

::
of

::::::::::
individuals

::
to

:::::::::
complete

:::
the

::::
life 455

::::
stage

:::::::::
becomes

::
76

::::::
weeks

:::
(or

:::
3.5

::::::
weeks)

::
if
:::
the

::::::::::
maturation

::::
rate

::::
was

:::
set

:::
to

:::
the

::::
10th

:::
(or

:::::
90th)

:::::::::
percentile

::
of

:::
its 456

::::
prior

::::::::::
distribution

::::::::::::
(respectively)

:
–
::::::::::
suggesting

:::
that

::::
this

:::
the

:::::
prior

:
is
::::
only

:::::::
weakly

::::::::::
informative

:::::
within

::
a
::::::::::
biologically 457

::::::::
plausible

:::::
range

::
of

::::::
values.

:
458

:::::
Prior

::::
for

:::::::
mStart

P ,
:::::::
mStart

J :::::
and

:::::::
mStart

I 459

:::
The

:::::
start

::
of

:::
the

::::::
pulse

::::::::
functions

:::::::::
controlling

::::::::::
maturation

:::
(to

:::::::::::
subsequent

:::
life

::::::
stages)

:::
of

:::::
pups,

::::::::
juveniles

::::
and 460

:::::::::
immatures

:::::
were

:::::
given

::::::::
uniform

::::::
priors.

::::
The

:::::::
bounds

:::
on

:::::
those

::::::::
uniform

:::::::::::
distributions

:::::
were

:::
set

::
to

::
0
::::
and

::::
104 461

::::::
weeks,

::::::
making

:::::
them

:::::::::::::
uninformative

::::
over

:::
the

::::::::
expected

::::::::::::
development

::::
time

::
of

::
E.

::::::
helvum

:
. 462
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:::::
Prior

::::
for

::::
µ−1
A 463

:::
The

::::::::
baseline

::::::::
mortality

:::
rate

:::
for

::::::
adults,

:::
µA,::

is
:::
the

::::::::
mortality

::::
rate

:::
that

::
is

::::::::
expected

::
in

:::
the

:::::::
absence

::
of

:::::::::::
competition 464

::::
with

:::::
other

::::
bats.

::::::
Thus,

:
it
::
is

:::
the

:::::::::
expected

::::::::
mortality

::::
rate

:::::
when

:::
bat

::::::::
densities

:::
are

:::::
close

::
to

:::::
zero.

:::
We

::::
set

:
a
::::::
mildly 465

::::::::::
informative

::::
prior

:::
on

:::
its

:::::::
inverse,

:::
the

::::::::
baseline

:::
life

:::::::::::
expectancy.

:::
For

:::::
that,

:::
we

::::
used

::
a
:::::::
gamma

::::::::::
distribution

:::::
with 466

::
an

::::::::
expected

:::::
value

::
of

::::
ten

:::::
years

:::
and

::
a
::::::::
standard

::::::::
deviation

::
of

::::
four

::::::
years.

:::
For

::::
this

::::::::::
distribution

::::
99%

::
of

::::
the

:::::
mass 467

:::::::::::
corresponds

::
to

:::
the

::::::::
expected

:::
life

::::::::::
expectancy

:::::
being

::::
less

::::
than

::::
21.6

::::::
years. 468

:::::
Prior

::::
for

:::
R 469

According to Hayman, McCrea, et al. (2012) the expected annual survival probability and 95% confidence
intervals is 0.63 and (0.27, 0.88) for adult bats. Using arguments similar to the previous section on pBirth, we
used optim to minimise the L2 norm of the errors between these three data points and fitted values, giving
the following model of adult survival

SSA ∼ Beta(4.95, 3.35). (34)

Similarly, Hayman, McCrea, et al. (2012) reported the expected annual survival probability and 95% confi- 470

dence intervals for young bats are 0.43 and (0.16, 0.77) respectively. To ensure that SY < SA ::::::::
SY < SA, we 471

assumed SY = RSSA and thatRS ::::::::::
SY = RSA :::

and
::::
that

::
R could bemodelled using a beta distribution. Thus, 472

we sought to identify parameters for RS ::
R that could minimise an L2 norm between the three data points 473

and their equivalent "fitted values". We used Monte Carlo approximation to obtain these "fitted values" as 474

follows. 475

Assume the following model forRS ,::
R,

:

RS ∼ Beta(αRR
:
, βRR

:
). (35)

For a given set of parameters (αR, βR), we simulate
::::::::
(αR, βR),

:::
we

:::::::::
simulated 10001 values from equations 34

and 35. Those vectors are
::::
weremultiplied to obtain 10001 samples of SY ::

SY , and kernel density estimation is

:::
was

:
applied to these samples to obtain an empirical distribution for SY:::

SY . This empirical distribution is
::::
was

used to identify the fitted expected value and 95% credibility interval, which are
:::::
were then used to calculate

the L2 norm.
:::::::::
Minimising

:::
the

:::
L2

:::::
norm

:::::::
resulted

::
in

:::::::::
obtaining

:::
the

::::::::
following

::::
prior

:

R ∼ Beta(4.7, 1.6).
::::::::::::::::

(36)

For further details, see our script hayman.R. 476

:::::
Prior

::::
for

:::
N0 477

:::
The

:::::
total

::::::::::
population

:::
size

:::
at

:::
the

::::
start

:::
of

::::
each

::::::::::
simulation

::::
(N0)::

is
:
a
::::::::::
parameter

::::
that

::::::
cannot

:::
be

::::::
known

:::::
with 478

::::::::
precision,

:::::
given

:::
the

::::
lack

::
of

:::::::
census

::::
data

::
or

:::::::::::::::::::::
capture-mark-recapture

:::::::
studies.

::::::::
However,

::::::::::
experience

::
in

:::
the

:::::
field 479

:::::::
indicates

::::
that

:::::::::
Yaounde’s

::
E.
:::::::
helvum

:::::::::
population

::
is
:::::::::
extremely

:::::
large,

::::
and

::::::::
probably

:::::::
consists

::
of

:::::::
several

:::::::::
hundreds 480

::
of

:::::::::
thousands

::
of

::::::::::
individuals.

::::
We

::::::::
adopted

:
a
:::::
prior

::::
that

::::
was

::::::::::
informative

:::::
about

::::
the

:::::
order

::
of

::::::::::
magnitude

::
of

::::
the 481

:::::::::
population

:
-
:::::::::::
representing

::::::::::
uncertainty

::
in
::::
the

::::
total

:::::::::
population

::::
size

:::
via

:
a
:::::::
gamma

:::::::::::
distribution,

::::
with

::
an

:::::::::
expected 482

::::
value

:::
of

:::::::
5× 105,

:
a
::::::::
standard

::::::::
deviation

::
of

::::::::
2.2× 104

::::
and

:::::
2.5th

:::
and

::::::
97.5th

:::::::::
percentiles

:::
of

::::::::
4.6× 105

:::
and

:::::::::
5.4× 105 483

::::::::::
respectively.

:::::
The

:::::::
purpose

::
of

::::
this

:::::
prior

::::
was

::
to

:::::::::
constrain

:::
N0 ::::::

within
:
a
:::::
likely

:::::
order

:::
of

::::::::::
magnitude,

::
in

:::::
order

:::
to 484

:::::::
facilitate

:::
the

::::::::::
estimation

::
of

:::
the

:::::
other

:::::::::::
parameters. 485

Prior for pAge0 486

Before simulating dynamics with an epidemiological model, it is necessary to set the initial conditions of 487

the system, i.e. the state of each compartment at time zero. For an age structuredmodel, this includes setting 488

the initial population sizes for each age class. We do that by parameterising
::::::::::::
parameterizing

:
in terms of the 489
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total population size at time zero, N0, and the proportion of that population associated with each age class, 490

pAge0 = (pP0, p
J
0, p

I
0, p

A
0):::::::::::::::::::
pAge0 = (pP0 , p

J
0 , p

I
0, p

A
0 ). Since pups and juveniles are absent at the start of the yearwe set 491

their initial proportions to zero. The prior onN0 was set to reflect the approximate
:::::::::::
approximate

:::
the

:::::::::
unknown 492

population size in Yaounde. Thus, we simply need
::::::
needed to set a prior for the proportion of immatures, pI0::

pI0, 493

and it’s compliment, pA0 = 1− pI0:::::::::::
pA0 = 1− pI0. We outline how we did that here. 494

Since pI0 ::
pI0 is a probability, it was natural to assign a beta distribution and to seek data on which to base

the hyperparameters
:::::::::::::::
hyper-parameters. Assuming that the annual adult survival is constant with age, the

population age structure follows a geometric series, and the proportion of individuals of a given age relative
to all individuals of the same age or greater is constant. Thus, we used tooth cementum annuli data (Peel,
KS Baker, Hayman, Suu-Ire, et al., 2016) to estimate that proportion, and thereby obtain an estimate for the
proportion of immature adults in the population at the start of the year, just prior to the spring birth pulse.
For each age t, in years, we modelled the proportion of bats of age t among all bats of age t or more as a
beta-binomial model with uniform prior, i.e.

p(Age = t|Age ≥ t, t ∈ [1, 14]) ∼ Beta(1 + nt, 1 + n>t)

where nt is the number of sampled bats of age t, n>t is the number of sampled bats older than t and t is any
integer in the interval [1, 14] – since the oldest bat in the data set was 15 years old. A weighted average of
these 14 priors was calculated to obtain a general prior

p(Age = t|Age ≥ τ) ∼ Beta
(
1 +

14∑
t=1

ntωt, 1 +

14∑
t=1

n>tωt

)
where the weights ωt ∝

∑14
t=1 n≥t account for the diminishing sample size as bats die each year. Since

p(Age = t|Age ≥ τ) is constant under the constant mortality assumption, it might therefore be reasonable
to use it as a prior for pI0::

pI0. This procedure resulted in the prior

pII0 ∼ Beta(38.74, 146.57).

However, in practice, this prior lead tomismatches with data that suggested that very few bats were still being
classified as immature at the start of the year (fig. 2). Thus, we maintained the expected value of this prior,
but relaxed the variance so to not exclude zero as the proportion of immatures at the start of January. This
relaxation resulted in the following prior

pII0 ∼ Beta(1, 3.8).

The density functions of these priors, and the 14 distributions used to build them, are shown graphically in 495

figure 7. 496

:::::
Prior

::::
for

::::
ϕI0 ::::

and
:::::
ϕA0 497

:::
The

:::::::::::
proportions

::
of

::::::::::
immatures

:::
and

::::::
adults

::::::
within

::::
each

::
of

::::
the

:::::::::::::
epidemiological

:::::::
classes

::
at

:::
the

::::
start

::::::
(t = 0)

:::
of 498

::::
each

:::::::::
simulation

::::
(ϕI0::::

and
:::
ϕA0:::::::::::

respectively)
:::::
were

:::::
given

:::::::
Dirichlet

::::::
priors.

:::::
These

::::::
priors

::::
were

:::::::::::::
parameterised

::
to

:::
be 499

::::::::::::
uninformative,

::::
with

::::
the

::::::::
exception

::::
that

:::
we

::::::::
assumed

:::
no

::::
bats

::
in

:::::
either

:::
of

:::::
these

:::
age

:::::::
classes

:::
will

::::
carry

:::::::::
maternal 500

:::::::::
antibodies

::
at

:::
the

::::
start

:::
of

:::
the

::::
year.

:
501

:::::
Prior

::::
for

::
β 502

::::::::::
Experience

:::
with

::::
our

:::::
model

:::::::::
indicated

:::
that

:::::::::::::
uninformative

:::::
priors

:::
for

:::
the

:::::::::::
transmission

::::
rate

:
β
:::
do

:::
not

:::::
work

::::
well.

:::::
Thus,

:
it
::::
was

:::::::::
important

::
to

:::::::
restrain

::
β

:::::
from

:::::
being

::
so

:::::
large

::::
that

:::
the

::::::::
posterior

::::::::::::
distributions

:::::::
became

::::::::::
biologically

::::::::::
implausible.

:::
To

::
do

::::
this,

:::
we

::::::::
assumed

:::
an

::::::::::
exponential

:::
(or

:::::::::::
equivalently,

::
a

:::::::
gamma

::::::::::
distribution

::::
with

:::::
shape

::::::
equal

::
to

::::
one)

:::::
prior,

::
to

::::::::
penalise

::::::
against

::::
very

:::::
large

::::::
values

::
of

::
β.

:::
To

::::::
obtain

:
a
::::::::::
reasonable

:::::::::
expected

:::::
value

::
for

::::
this

:::::
prior
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Figure 7. Posterior distributions for beta-binomial models of the proportion of a given age of adult in years (t)
in the sub-population of bats the same age or more. Tooth cementum annuli data (Peel, KS Baker, Hayman,
Suu-Ire, et al., 2016) were used to calculate these distributions, fixing t at integer values in the interval [1, 14].
The weighted average of those 14 distributions (dotted line) proved to be overly restrictive as a prior. So
the variance of the prior was relaxed to not exclude zero (black line), providing a prior for the proportion of
immature adults in the E.helvum population at the start of the year.

::
we

::::::
asked

:::::::
roughly

::::
how

:::::
many

::::
new

:::::::::
infections

:::::
might

::
a
:::::
single

:::::::::
infectious

:::::::::
individual

::::::::
generate

::
in

::::
one

::::
week

::::::
when

:::::::::
introduced

::::
into

:
a
::::::::::
completely

::::::::::
susceptible

:::::::::
population

:::::
(and

:::::::::
neglecting

::
all

:::::
other

::::::::::
transitions).

:::
In

:::::
other

::::::
words,

:::
we

:::::
asked

:::::
what

:::::
might

:::
be

:
a
:::::::
roughly

::::::::::
reasonable

::::::
value

:::
for

:::
the

:::::::
product

:::::
βSI ,

::::::
where

:::::
I = 1

::::
and

::::::::::
S = E[N0].::::::

Since

::::::::::::::
E[N0] = 5× 105

:::
we

::::::
opted

:::
for

:::::::::::
E[β] = 10−5

::
so

::::
that

::
a

:::::
priori

:::
the

::::::::
expected

:::::::
number

:::
of

:::::::::
secondary

:::::
cases

::
in

::::
one

::::
week

::
is
::::
five.

:::::
Thus

:::
we

::::
used

:::
the

::::::::
following

:::::
prior

β ∼ Gamma(shape = 1, scale = 10−5).
:::::::::::::::::::::::::::::::::

(37)

::::::
Setting

::
β

::
to

:::
the

:::
1st

::
or

::::
99th

:::::::::
percentile

::
of

::::
this

:::::
prior

::::
leads

:::
to

:::
the

:::::::
product

::::
βSI

:::::
being

::::
0.05

:::
or

::
23

:::::::::::
respectively. 503

:::::
Prior

::::
for

::
ρ,

:::::
α−1
M ::::

and
:::::
α−1

504

:::
For

:::
the

:::::::
recover

::::
rate,

:::
we

:::
set

:::
an

::::::::::
exponential

:::::
prior

::::
with

:::
an

::::::::
expected

:::::
value

::
of

::::
one

:::::
week

:
–
::
a

::::
value

::::::::::
consistent

::::
with

:::::
many

::::
virus

:::::::::
infections

::
in

::::::::
humans.

::
In

:::::
other

::::::
words

::
we

:::::::::
assumed

:::
that

:

ρ ∼ Gamma(shape = 1, scale = 1).
:::::::::::::::::::::::::::::

(38)
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:::
For

:::
the

:::::::::
expected

:::::::
duration

:::
of

::::::::
maternal

:::::::::
antibodies

:::::::
(inverse

::
of

::::::::
antibody

::::
loss

:::::
rate)

:::
we

:::
set

::
an

:::::::::::::
uninformative

:::::::
uniform

::::
prior

:::::
over

:::
the

:::::
range

::
of

::::
zero

:::
to

::::::
twenty

:::::
years

α−1
M ∼ Uniform(0, 20× 52).

:::::::::::::::::::::::
(39)

:::
For

:::
the

::::::::
expected

::::::::
duration

::
of

::::::::::
maintaining

:::::::::
antibodies

::::::::
following

::::::::
infection,

:::
we

::::::::
specified

:::
the

::::::::
following

:::::::::::::
non-informative

::::::::::
exponential

::::
prior

:

α−1 ∼ Gamma(shape = 1, scale = 1011).
:::::::::::::::::::::::::::::::::::

(40)

:::::
Prior

::::
for

:::::
pR2L:::::

and
:::::
pL2R 505

:::
The

:::::::::::
probabilities

::
of

::::::::::
developing

::::::::
long-term

:::::::::
immunity

::::::::
following

:::
the

:::
loss

::
of

::::::::::
antibodies,

:::::
pR2L,:::

and
::
of

:::::::::::
re-acquiring

:::::::::
antibodies

:::::
when

::::::::
exposed

::
to

:::
the

:::::
virus

:::::
whilst

::
in

::
a
::::
state

:::
of

::::
long

::::
term

:::::::::
immunity,

::::::
pL2R, ::::

were
::::::::
assigned

::::::::
uniform

::::::::::::
uninformative

::::::
priors.

::
In

:::::
other

::::::
words,

:

pR2L
::::

∼ Beta(1, 1)
::::::::::

(41)

pL2R
::::

∼ Beta(1, 1).
::::::::::

(42)
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