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ABSTRACT

Insecticide resistance and behavioural adaptation of malaria mosquitoes affect the efficacy of long-lasting

insecticide nets - currently the main tool for malaria vector control. To develop and deploy complementary,

efficient and cost-effective control interventions, a good understanding of the drivers of these physiological

and behavioural traits is needed. In this data-mining exercise, we modelled a set of indicators of physiological

resistance to insecticide (prevalence of three target-site mutations) and behavioural resistance phenotypes

(early- and late-biting, exophagy) of anopheles mosquitoes in two rural areas of West-Africa, located in

Burkina Faso and Cote d’Ivoire. To this aim, we used mosquito field collections along with heterogeneous,

multi-source and multi-scale environmental data. The objectives were i) to assess the small-scale spatial and

temporal heterogeneity of physiological resistance to insecticide and behavioural resistance phenotypes,

ii) to better understand their drivers, and iii) to assess their spatio-temporal predictability, at scales that

are consistent with operational action. The explanatory variables covered a wide range of potential

environmental determinants of vector resistance to insecticide or behavioural resistance phenotypes : vector

control, human availability and nocturnal behaviour, macro and micro-climatic conditions, landscape, etc.

The resulting models revealed many statistically significant associations, although their predictive powers

were overall weak. We interpreted and discussed these associations in light of several topics of interest, such

as : respective contribution of public health and agriculture in the selection of physiological resistances,

biological costs associated with physiological resistances, biological mechanisms underlying biting behaviour,

and impact of micro-climatic conditions on the time or place of biting. To our knowledge, our work is the first

modeling insecticide resistance and feeding behaviour of malaria vectors at such fine spatial scale with such

a large dataset of both mosquito and environmental data.
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Introduction25

Malaria remains a major public health concern in Africa, with 234 million cases and 593 000 death over the26

continent in 2021 (WHO, 2022). After years of steady reduction in the disease transmission mainly due to27

the scale-up of vector control (VC) interventions (in particular insecticide-based tools such as long lasting28

insecticide nets (LLIN) and indoor residual spraying (IRS)) (Bhatt et al., 2015), progress is now stalling since29

2015 (WHO, 2022). Involved in such worrying trends are a combination of biological, environmental and30

socio-economical factors. The mosquito biology, with the buildup of adaptive changes in the mosquito vectors31

populations enabling them to avoid or circumvent the lethal effects of insecticides, is most likely playing a very32

important contribution (Killeen, 2014). These changes are framed as vector resistance to insecticides. As a33

consequence of the widespread use of insecticides (in agriculture and public health), vector resistance has34

arisen rapidly in malaria vectors in many areas of Africa and above (Durnez and Coosemans, 2013; Riveron35

et al., 2018); and as previously indicated, is now at such level that it compromises the effectiveness of the36

most efficient malaria control interventions (Gatton et al., 2013; Hemingway et al., 2016; Killeen, 2014; Sokhna37

et al., 2013). Complementary and locally-tailored VC strategies taking into account the great diversity of vectors38

resistance mechanisms (see below) are therefore needed to target these vectors contributing to residual39

malaria transmission (Corbel and N’Guessan, 2013; Durnez and Coosemans, 2013; Hemingway et al., 2016;40

Moiroux, 2012; Riveron et al., 2018; Sokhna et al., 2013; WHO, 2017).41

42

Vector resistances to insecticide are usually split into two categories : physiological and behavioural resistance43

(Lockwood et al., 1984; Sokhna et al., 2013). Physiological resistance refers to biochemical and morphological44

mechanisms (e.g. target-site modifications, metabolic resistance, cuticular thickness) that enable the mosquito45

to withstand the effects of insecticide despite its contact with it (Davidson, 1957). Among the physiological46

resistances, the target-site mutations L1014F (kdr-w) (Martinez-Torres et al., 1998), L1014S (kdr-e) (Ranson et al.,47

2000), and G119S (ace-1) (Weill et al., 2004), conferring insecticide resistance to pyrethroids (kdr-w and kdr-e)48

and to carbamates and organophosphates (ace-1), have been extensively described. behavioural resistance,49

on its side, refers to any modification of mosquito behaviour that facilitates avoidance or circumvention50

of insecticides (Carrasco et al., 2019; Gatton et al., 2013; Riveron et al., 2018). behavioural resistance of51

mosquitoes to insecticides can be qualitative (i.e. modifications that prevent or limit the contact with the52

insecticide) or quantitative (i.e. modifications that stop, limit or reduce insecticide action once contact has53

occurred, e.g. escaping, behavioural thermoregulation or curative self-medication) (Carrasco et al., 2019).54

Up-to-date, the behavioural resistance mechanisms described in the literature are mainly qualitative and55

consist in spatial, temporal, or trophic avoidance. In particular, in the anopheline populations, the following56

behavioural qualitative resistance mechanisms have been described after the scale-up of insecticide-based57

VC tools (Durnez and Coosemans, 2013) : i) increase of exophagic or exophilic behaviours (spatial avoidance),58

wheremosquitoes shifted from biting or resting indoor to outdoor, ii) increase of early- or late-biting behaviours59

(temporal avoidance), where mosquitoes shifted from biting at night to earlier in the evening or later in the60

morning, iii) increase of zoophagic behaviours (trophic avoidance), where mosquitoes shifted from biting on61

humans to biting on animals.62

63

To help develop and deploy complementary VC strategies that are efficient and cost-effective, a better64

understanding of the spatiotemporal distribution and drivers of both vector physiological resistance and65

feeding behaviour is needed at a local scale. We raise here a set of questions that, among others, must be66

explored further at local scale towards this aim :67

68

> What is the respective contribution of public health and agriculture in the selection of physiological69

resistances in Anopheles vectors ? The molecular and genetic basis of physiological resistance has been70

widely acknowledged: under the pressure of insecticides, mutations that enable the vectors to survive are71

naturally selected and then spread over the generations (Labbé et al., 2017; Martinez-Torres et al., 1998). The72



main force that governs the selection of a physiological mechanism of resistance in a population of insects is73

therefore the pressure induced by insecticide exposure. This pressure can be induced by the vector control74

tools, or by the runoff of pesticides used in agriculture (in many cases, the same as those used for impregnation75

of bed nets) into the malaria vectors breeding sites (Chandre et al., 1999; Hien et al., 2017; Reid and McKenzie,76

2016; Yadouleton et al., 2011). Assessing the relative contribution of these two pressures on the selection of77

resistant phenotypes is critical to further predict the relative impacts of public health and agriculture on the78

growth of physiological resistances and act consequently.79

80

> What are the biological mechanisms underlying behavioural resistances ? Contrary to physiological81

resistance, the biological mechanisms underlying behavioural resistance are still poorly known (Carrasco et al.,82

2019; Durnez and Coosemans, 2013; Killeen, 2014; Main et al., 2016). In particular, a pending question, having83

important implications for vector control, is whether behavioural shifts reflect evolutionary adaptations in84

response to selection pressures from vector control tools, as for physiological resistances (constitutive resistance)85

or are manifestations of pre-existing phenotypic plasticity which is triggered when facing the insecticide or86

in response to environmental variation that reduces human host availability (inducible resistance). Inducible87

resistance imply that vectors rapidly revert to baseline behaviours when VC interventions are lifted, whereas88

constitutive resistance might progressively and durably erode the effectiveness of current VC tools. Under-89

standing the biological mechanisms underlying behavioural resistances is therefore important to assess the90

long-term efficacy of insecticide-based VC interventions.91

92

> Aremosquito biting behavioursmodulated by local-scale environmental conditions other than insecticide-93

related ones ? As aforementioned, the overall rise of behavioural resistances is likely caused by the widespread94

of insecticide-based vector control interventions. However, local environmental conditions can modulate vector95

behaviours at the time of foraging activity. Local climatic conditions – e.g. wind, rain, temperature, humidity,96

luminosity - may for example affect the timing and location of vector biting, as it has been noted in some97

studies (Kirby and Lindsay, 2004; Kreppel et al., 2020; Ngowo et al., 2017). Mosquitoes with natural endophagic98

/ endophilic preferences might, for example, bite or rest outside if temperature inside is too high or humidity99

too low, in order to decrease their risk of desiccation-related mortality (Kreppel et al., 2020; Ngowo et al.,100

2017). Land cover, as well, can affect biting rhythms. It has been noted for example that distance to breeding101

sites may influence nocturnal host-seeking behaviour, with vectors biting on average earlier in the night in102

households located close to the breeding sites (Njan Nloga et al., 1993; Snow and Gilles, 2002). Assessing103

whether and to which extent behavioural resistance traits are influenced by local environmental (climatic or104

landscape) settings may help design VC tools exploiting the vulnerabilities of vectors.105

106

> Are there associations between behavioural and physiological resistances ? Physiological and be-107

havioural resistances may likely coexist in mosquito populations, with the first possibly influencing the second.108

In fact, physiologically resistant mosquitoes may, theoretically, use the recognition of insecticide-based control109

tool as a proxy for host presence (framed as behavioural exploitation (Carrasco et al., 2019)). Several studies have110

actually showed that the kdr mutation can modify the host-seeking or biting behaviour of Anopheles in presence111

of insecticide-treated net (Diop, Moiroux, et al., 2015; Diop, Chandre, et al., 2021; Porciani et al., 2017). Such112

behavioural exploitation could potentially lead to a better host recognition/localization and have a dramatic113

impact, with the control intervention having the opposite effect to the one expected. It is hence important to114

assess if and to which extent physiologically resistant mosquitoes exhibit different biting behaviours than their115

susceptible counterparts.116

117

> Which adaptative strategy (physiological or behavioural resistance) arises faster ? Understanding the118

relative capacity of mosquitoes to develop physiological resistance and to shift their behaviour in response to119

vector control is necessary to highlight where and when mitigation efforts should be prioritized (Sanou et al.,120



2021). After introduction / re-introduction of insecticide-based tools, if vectors rapidly shift their behaviour to121

feed outside or at times when people are not protected by an LLIN, interventions that target such mosquitoes122

should be quickly deployed. In contrast, the rapid emergence of physiological resistance in vectors who123

continue to feed indoors and at night indicates that switching to alternative insecticide classes in indoor-based124

interventions may have a greater impact. Additionally, for a given environment, assessing the relative rate of125

selection of physiological and behavioural resistances is of direct epidemiological importance : it has been126

showed for example that under a scenario where LLIN and IRS are both heavily used, changes in the susceptibil-127

ity to insecticide is likely to have a bigger epidemiological impact than changes in biting times (Sherrard-Smith128

et al., 2019).129

130

> Are resistance rates heterogeneous at small spatiotemporal scales ? Mosquito presence and abundance131

has already been found heterogeneous in space and time at fine-scale, calling for locally-tailored (species-,132

season-, and village-specific) control interventions (Moiroux, Bio-Bangana, et al., 2013; Moiroux, Djènontin,133

et al., 2014; Taconet, Porciani, et al., 2021). However, little is known about the small-scale spatiotemporal134

heterogeneity of vector resistance. The potential drivers of the selection or triggering of resistant phenotypes135

(vector control use, land cover, micro-climate, human behaviour, etc.) are likely to vary at small spatiotem-136

poral scales, and so may, at the end of the line, vector resistance. As for abundances, assessing the level of137

heterogeneity of resistance rates in space and time is important to assess the spatiotemporal scale at which138

management of vector resistance should be considered.139

140

> To what extent can we explain and predict vector resistance and biting behaviour in space and time ?141

Assessing the levels of explainability and predictability of vector resistance and biting behaviour is important142

for both scientific and operational purposes. Towards this aim, generating statistical models linking vector143

resistances or biting behaviours to their potential drivers and assessing their explanatory and predictive powers144

can help (Shmueli, 2010; Shmueli and Koppius, 2010). High explanatory or predictive powers in the models145

might suggest that the conditions driving a vector to resist are well understood, and conversely, low explanatory146

powers might suggest that resistances are driven by factors either yet undiscovered or not included in the147

models. Additionally, assessing the predictability of resistances in vector populations in space and time is an148

important step towards mapping vector resistance at every place (e.g. village) and time (e.g. season) in the149

area, with such decision-support tools important to deploy the right intervention, at the right place and time150

(Taconet, Porciani, et al., 2021).151

152

In this study, we used field mosquito collections and environmental data collected simultaneously in two153

rural areas of West-Africa to bring elements of answer to these questions for our areas. Guided by these154

questions, our overall objectives were i) to assess the fine-scale prevalence and spatiotemporal heterogeneity155

of physiological resistances and at-risk biting behaviours of malaria vectors in these areas and ii) to better156

understand their drivers. To do so, we modeled a set of indicators of physiological resistances and behavioural157

resistance phenotypes (namely kdr-w, kdr-e, ace-1 target-site mutations, exophagy, early-biting, and late-158

biting) at the individual mosquito level using this fine-grained dataset and advanced statistical methods in an159

exploratory and holistic-inductive approach. Patterns found in the data were interpreted and discussed in160

light of the topics aforementioned, of importance for the management of malaria residual transmission. We161

concluded with a set of recommendations to manage vector resistances in our study areas.162



Methods163

Entomological and environmental data164

The data used in this work were collected in the frame of the REACT project (Soma, Zogo, Somé, et al., 2020;165

Zogo, DD Soma, et al., 2019). In this projet, a total of fifty-five villages, distributed in two West-African rural166

areas (~ 2500 squared km each) located in the areas of Diébougou (southwestern Burkina Faso (BF)) and167

Korhogo (northern Ivory Coast (IC)) were selected according to the following criteria: accessibility during the168

rainy season, 200–500 inhabitants per village, and distance between two villages higher than two kilometers.169

After an exhaustive census of the population in these villages at the beginning of the project, entomological170

and human behaviours surveys were regularly conducted during 15 months (1.25 year) in the Diébougou171

area and 18 months (1.5 year) in the Korhogo area. Vector control interventions were implemented both as172

part of the project and of the national malaria control programs (see below). Figure 1 shows the study areas173

and the corresponding timelines for data collection and vector control interventions. The data table available174

in Moiroux, Pennetier, et al. (2023) lists the villages included in the study: names, geographic coordinates,175

vector control interventions implemented in each village. Entomological data were collected in the field, and176

environmental data were collated from specific devices (see below) or created from heterogeneous field and177

satellite-based sources. Below is a description of the data used in our work.178

179

Figure 1. A/ Map showing the study areas and the villages where entomological collections were performed

; B/ Timeline for vector control interventions and data collection in the villages. Each color corresponds to

a different type of data collected or vector control intervention implemented. The anopheles and human

behavioural surveys are numbered.



> Anopheles collections180

181

Several rounds of mosquito collections (eight in the Korhogo (IC) area, seven in the Diébougou (BF) area)182

were conducted in each village. The periods of the surveys span the typical climatic conditions of these tropical183

areas (except the peak of the rainy season - July to September) (see Additional file 1.A for the spatiotemporal184

trends of the meteorological conditions). Mosquitoes were collected using the Human Landing Catch (HLC)185

technique from 17:00 to 09:00 both indoors and outdoors at four sites per village (i.e. eight collection points)186

for one night during each survey. The distance between indoor and outdoor collection points was at least187

10 meters to minimize competition between mosquito collectors (Coffinet et al., 2009). Malaria vectors were188

identified using morphological keys. All individuals belonging to the Anopheles funestus group (in both study189

areas) and Anopheles gambiae s.l. complex (in BF) were identified to the species level using PCR. In IC, due to190

the very large numbers of An. gambiae s.l. vectors collected, a sub-sample only of these individuals (randomly191

selected in space and time) was identified to species. Finally, in BF, PCR assay were carried out on all the An.192

gambiae s.s. and An. coluzzii collected to detect the L1014F (kdr-w), the L1014S (kdr-e) and the G119S (ace-1)193

target-site mutations. In IC, also due to the large numbers of individuals collected, a subsample only of the194

*An. gambiae s.l.* were genotyped for the L1014F and G119S mutations. Due to the significant risk of bias195

associated with the sub-sampling strategy (not all villages were sampled in all surveys), we excluded these data196

from the analysis. Detailed descriptions of the methods used to obtain these data are provided in Taconet,197

DD Soma, et al. (2023). These data were published in the Global Biodiversity Information Facility (GBIF) (D Soma198

et al., 2023).199

200

> Data on weather preceding mosquito collections and during mosquito collections201

202

Weather can impact the fitness or the activity of resistant genotypes (Kliot and Ghanim, 2012), as well as203

the biting behaviour of the mosquitoes (see Introduction). In this work, we recorded or retrieved weather204

conditions : (i) during mosquito collections (i.e. the HLC sessions), (ii) during the day of collection, and (iii)205

during the month preceding collection. Weather on the day of collection and during mosquito collection may206

impact the relative activity of each genotype and phenotypes associated with resistances. Weather during207

the month preceding the survey, on its side, can impact development and survival rates of both the current208

and parental generations of collected mosquitoes (Carnevale et al., 2009; Holstein, 1952; Townson, 1993).209

Regarding our outputs (prevalence of behavioural phenotypes and target-site mutations - see next section),210

weather during the month preceding collection may therefore impact the fitness of the studied genotypes (for211

target-site mutations) or possible – and unknown - genotypes associated with studied behavioural phenotypes.212

213

Micro-climatic conditions (temperature, relative humidity, luminosity and atmospheric pressure) were si-214

multaneously recorded where mosquito collections were being conducted. Instruments used to record these215

data were : for temperature and relative humidity : Hygro Buttons 23 Data Loggers [Proges Plus DAL0084]216

(temporal resolution (TR): 15 minutes) ; for luminosity : HOBO Pendant® Temperature/Light 8K Data Logger217

(TR: 15 minutes) ; for atmospheric pressure : Extech SD700 Data Loggers (TR : 10 minutes). Hygro and Hobo218

loggers were positioned both inside and outside the houses where mosquito sampling was conducted, close219

to the sampling positions. The barometer was positioned at the center of the village. These field data were220

completed with satellite or modeled data available at coarse spatial but high temporal resolutions : rain-221

fall (spatial resolution (SR) : ~ 11 km, TR : 30 min, source : Global Precipitation Measurement (GPM) IMERG222

(GSFC, 2019), wind speed (SR : ~ 28 km,TR : 1h, source : ERA5 (Hersbach et al., 2020)), apparent magnitude223

of the Moon (SR : 0.001 degrees, TR : 1 day, source : Institute of celestial mechanics and ephemeris calculations).224

225

Meteorological conditions on the day of collection and over one month preceding collection were extracted226

from satellite imagery. Namely, rainfall estimates were extracted from the GPM - IMERG daily Final products227



(Center, 2019). Diurnal and nocturnal temperatures were derived from the Moderate Resolution Imaging228

Spectroradiometer (MODIS) daily Land Surface Temperature (LST) Terra and Aqua products (Wan et al., 2015a,b).229

These data were then cropped and averaged in 2-km buffer zones around each HLC collection point. From230

this, variables representing meteorological conditions on the day of collection and over one month preceding231

collection were constructed (for the latter, by averaging the 30-day time series). Detailed descriptions of the232

methods used to collect and process these data are provided in Taconet, Porciani, et al. (2021).233

234

> Data on host availability and human behaviour235

236

The nocturnal behaviour of humans (hours inside the dwellings, hours of use of LLINs) drives host avail-237

ability for the mosquitoes and can therefore impact their behaviour. For instance, high LLIN use rate can238

drive mosquitoes to feed outside, at times when people are not protected, or on alternative sources of blood239

(Durnez and Coosemans, 2013). Here, human population was counted in each village, through an exhaustive240

census conducted at the beginning of the project. Then, several human behavioural surveys (two in IC, three in241

BF) were carried out in each village (see Figure 1). For each survey and village, several households (mean = 14 ,242

SD = 2) were randomly selected, and for each household, one to three persons in each age class (0–5 years old,243

6–17 years old and≥ 18 years old) were selected. The head of the household was then asked, for each selected244

person, on the night preceding the survey : i) whether he/she used an LLIN or not, ii) the time at which he/she245

entered and exited his own house, and iii) the time at which he/she entered and exited his LLIN-protected246

sleeping space (where appropriate). Households for human behavioural surveys were independently selected247

from households for entomological surveys. The surveys were conducted after the distribution of the LLINs248

(see below), and span the typical climatic conditions of the areas. Detailed descriptions of the methods used to249

collect these data are provided in Soma, Zogo, Taconet, et al. (2021).250

251

> Landscape data252

253

Landscape can have an impact on mosquito foraging behaviour (e.g. the distance to breeding sites can254

impact biting rhythms) or physiological resistance (e.g. through pesticides used in crops) (see Introduction).255

Digital land cover maps were produced for each study area by carrying out a Geographic Object-Based Image256

Analysis (Hay and Castilla, 2008) using multisource very high and high resolution satellite-derived products.257

From these maps, several variables were derived : the percentage of landscape occupied respectively by cotton258

fields, by rice fields, and by the other crops (mainly leguminous crops, millet, sorghum) in a 2 km buffer size area259

around each collection point ; and the distance to the nearest stream (as a proxy for the distance to potential260

breeding sites, as shown in other studies conducted in these areas (Taconet, Porciani, et al., 2021; Zogo, Koffi,261

et al., 2019)). For cotton, the variable was binarized as presence / absence of cotton cultivated due to the small262

range of values. In addition, the geographical location of the households was recorded, and used to derive263

two indices : the degree of clustering of the households in each village, and the distance from each collection264

point to the edge of the village. The land cover maps along with detailed descriptions of the methods used265

to generate them are available at Taconet, Koffi Amanan, et al. (2023) and Taconet, Dabiré, et al. (2023). The266

methods used to compute the statistical variables from these data are detailed in Taconet, Porciani, et al. (2021).267

268

> Vector control269

270

Repeated exposure to insecticides used in vector control interventions is undoubtedly one of the most271

important drivers of the selection of resistance (see Introduction). In both Burkina Faso and Ivory Coast, LLINs272

have been universally distributed every 3-4 years since 2010 (PNLP, 2014a,b). In BF, a mass distribution of LLINs273

(PermaNet 2.0) was carried out by the National Malaria Control Program in July 2016 (i.e. 6 months before our274

first entomological survey). In IC, our team distributed LLINs in the villages of the project in June 2017 (i.e. height275



months after the first entomological survey and ten months before the last one). Complementary VC tools276

were implemented in some of the villages in the middle of the project - namely IRS, ivermectin to peri-domestic277

animals (IVM), intensive Information Education and Communication to the populations (IEC), and larval control278

(Larv.) as part of a randomized controlled trial aiming at assessing the benefits of new, complementary VC279

strategies (Soma, Zogo, Somé, et al., 2020; Zogo, DD Soma, et al., 2019) (see Figure 1, and Additional file 1280

available online at this URL (along with the other supplementary material) : https://doi.org/10.23708/VJEEMU281

(Taconet, D Soma, et al., 2023b)).282

283

Statistical analyses284

Dependent and independant variables285

Six indicators of potential vector resistance to insecticides were modelled :286

• three indicators of physiological resistance to insecticide : kdr-wmutation, kdr-emutation, ace-1mutation,287

• three indicators of behavioural resistance phenotypes : early biting, late biting, exophagy. Here, it is288

unknown whether changes in prevalence of studied mosquito behaviours are the result of constitutive289

resistances (i.e. inherited traits selected by the insecticide pressure) or of inducible resistance (that rely290

on phenotypic plasticity). The latter does not fit an accepted definition of insecticide resistance that291

rely on the inheritance property [@Zalucki2017]. Therefore in the remainder of this manuscript, we292

will qualify the three studied phenotypes, possibly constitutive or inducible, as ’behavioural resistance293

phenotypes’.294

Exophagy was defined as the probability for a host-seeking mosquito to bite outdoor (as opposed to indoor).295

Early biting was defined as the probability for a host-seeking mosquito to bite before 50 % of the LLIN users296

were declared to be under their bednet in the evening, and late biting was defined as the probability for a297

host-seeking mosquito to bite after 50 % of the LLIN users were declared to be out of their bednet in the298

morning (based on the closest - in space and time - human behaviour survey). Kdr-w, kdr-e and ace-1mutations299

were defined as the probabilities for an allele of a host-seeking mosquito to be mutated (as opposed to300

wild type). The statistical unit was therefore the mosquito for biting behaviour models and the allele for301

physiological resistance models. Dependent variables were all binary (0 = absence of resistance/mutation,302

1 = presence of resistance/mutation) and models outcomes were probabilities for a mosquito (resp. allele)303

to be resistant (resp. mutated). Each indicator was modeled separately for each main species in each study304

area, as determinants of resistance might be species- or site-specific (i.e. mosquitoes might respond differently305

to environmental variations depending on the species and study area, due to potential local chromosomal306

forms, adaptation, etc.) (Durnez and Coosemans, 2013; Riveron et al., 2018). As three main species were found307

in BF and two in IC (see Results section), a total of twenty-one dependent variables were built (exophagy : 3308

in BF and 2 in IC ; early biting : 3 in BF and 2 in IC ; late biting : 3 in BF and 2 in IC ; kdr-w : 2 in BF ; kdr-e : 2309

in BF ; ace-1 : 2 in BF). Based on literature (see Introduction) and available data, we then built independent310

variables representing potential determinants of each of these resistant phenotypes. These variables are311

provided in Table 1. To build these variables, the source data were possibly aggregated in space or time, at312

varying resolutions depending on the considered dependent variable. For example, we constructed a binary313

variable "Rainfall during collection" (presence/absence of rainfall during the hour of collection) by summing the314

source data available at a 30-minutes temporal resolution and then applying a threshold (> 0 mm of rainfall315

= presence, otherwise absence). Replication data are available online at https://doi.org/10.23708/LV8GEW316

(Taconet, D Soma, et al., 2023a).317

318

319
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Table 1. Independant variables built and their inclusion in the statistical models. A cross (’x’) indicates that the independent variable (in row) was used as an input in

the model (in column). The source data are described in the ’Entomological and environmental data’ section of the manuscript, and the binomial statistical models are

described in the ’Statistical analyses’ section. Some dependent or independent variables, mentioned with a *, were available only in the BF study area.

Statistical models (dependent variables)

Behavioural resistance phenotypes † Physiological resistance ‡

Independent variables (in bold : ’family’ of variables and source data) Exophagy Early biting Late biting Kdr-w* Kdr-e* Ace-1*

Vector control

Vector control tool implemented in the village x x x x x x

Time since last distribution of LLIN (months) x x x x x x

Host availability (source : human behavioural surveys)

Number of inhabitants in the village x x x x x x

% of the population using an LLIN in the village on the season of collection x x x x x x

% of the population indoor (i.e. inside their houses) in the village on the hour of collection x x x x

% of the population under an LLIN in the village on the hour of collection x x x x

Vector resistance / behaviour (source : molecular analyses)

Kdr-e mutation status in the collected mosquito* x x x x

Kdr-w mutation status in the collected mosquito* x x x x x

Ace-1 mutation status in the collected mosquito* x

Place of collection of the collected mosquito (indoors or outdoors) x x

Micro-climatic conditions during collection (source : weather data loggers)

Temperature (°C) x x x x x

Humidity (%) x x x x x

Luminosity (Lux) x x x x x

Atmospheric pressure (hPa) x x x x x

Rainfall (presence/absence) x x

Wind speed outdoor (m/s) x x

Temperature difference between inside and outside the house of collection (°C) x

Relative humidity difference between inside and outside the house of collection (%) x

Luminosity difference between inside and outside the house of collection (Lux) x



Apparent magnitude of the moon on the night of collection (unitless) x

Meteorological conditions the day of collection (source : satellite data)

Rainfall on the day of collection (mm) x x x x x x

Diurnal temperature on the day of collection (°C) x x x x x x

Meteorological conditions on the month preceding of collection (source : satellite data)

Diurnal temperature (average) on the month preceding collection (°C) x x x x x x

Nocturnal temperature (average) on the month preceding collection (°C) x x x x x x

Rainfall on the month preceding collection (cumulated mm) x x x x x x

Landscape and crops (source : satellite data)

Degree of clustering of the households in the village) (Clark and Evans aggregation index) x x x

Euclidian distance from the collection point to the edge of the village (meters) x x x

Euclidian distance from the collection point to the nearest river (meters) x x x

% of landscape occupied by rice fields in a 2 km-buffer size area around the collection point x x x

Presence / absence of cotton fields in a 2 km-buffer size area around the collection point x x x

% of landscape occupied by other types of crops in a 2 km-buffer size area around the

collection point

x x x

Others

Number of mosquitoes collected at the collection point during the night of collection x x x

*
BF area only

†
Statistical unit = collected mosquito

‡
Statistical unit = allele of collected mosquito



Modeling workflow320

A graphical representation of the modeling workflow (explained below) is available in Additional figure 2. A replication321

R script (starting from the section ‘Multivariate modeling part 1 : Explanatory model’) is available online at this URL :322

https://doi.org/10.23708/LV8GEW (Taconet, D Soma, et al., 2023a).323

324

Pre-processing. First, we excluded from the modeling process those dependent variables that could hardly325

be modelled due to the combination of very few ‘resistant‘ observations and extreme class imbalance (number326

of samples from the ‘resistant‘ class « number of samples from the ‘sensible‘ class). The following criteria were327

used for exclusion: ‘resistant’ class≤ 50 observations &≤ 3% of the total observations.328

329

Next, we implemented the modeling workflow described below for each remaining dependent variable.330

331

Bivariate modeling. We first excluded the independent variables that were poorly associated with the332

dependent variable (criteria for exclusion : p-value > 0.2 of a bivariate Generalized Linear binomial Mixed-effect333

Model (GLMM) with nested random effects at the village and collection site level). \textcolor{LimeGreen}{Next,334

we calculated the Pearson correlation coefficient among the retained variables and filtered-out collinear335

variables (correlation coefficient > 0.7) based on empirical knowledge (for instance, diurnal and nocturnal336

temperature over the month preceding collection were often correlated and in such case we retained nocturnal337

temperatures; % of the population indoor and under an LLIN in the village on the hour of collection were often338

correlated and in such case we retained % of the population under an LLIN).} With the set of remaining inde-339

pendent variables, two distinct multivariate models were built, with complementary objectives, as explained in340

the Box 1 below.341

342

Multivariate modeling part 1 : Explanatory model. A binomial GLMM was fitted to the data. Nested ran-343

dom effects were introduced in the model at the village and collection place level. Variables were deleted344

recursively using an automatic backward variable selection procedure based on the reduction of the Akaike345

Information Criterion (AIC). Variables belonging to the ‘vector control’ (for all resistance models) and ‘crops’346

(for physiological resistance models only) groups were forced in the multivariate models (i.e. they were not347

filtered-out in the variable selection procedure) because there are strong a priori assumptions associated348

with these variables. Such variable selection procedure therefore retained all the ‘vector control’ and ‘crops’349

variables (whether significantly associated or not with the dependent variable), and the additional variables350

that decreased the AIC of the multivariate model.351

352

Multivariate modeling part 2 : Predictive model. We additionally fitted a Random Forest (RF) model353

(Breiman, 2001a) to the data. The model hyperparameters were optimized using a random 5-combinations354

grid search (Chicco, 2017). Whenever the dependent variable was imbalanced (more than 1/3 imbalance ratio355

between the positive and negative class), data were up-sampled within the model resampling procedure to356

cope with well-known problems of machine-learning (ML) models regarding class imbalance (Tyagi and Mittal,357

2020).358

359

Assessment of effect sizes and significance of independent variables. To interpret the effect of each in-360

dependent variable in the GLMM model, we plotted, for each independent variable retained in the final361

model, the predicted probabilities of resistance across available values of that variable (all other things being362

equals) (i.e. “partial dependence plot” (PDP) (Friedman and Popescu, 2008)). For reporting and discussion363

in the manuscript, we kept only variables that had a p-value < 0.05 (results containing the ‘full’ models are364

provided in supplementary material, see Results section). To uncover the possible complex relationships365

that the RF model had learned, we generated smoothed versions of PDPs for each independent variable.366

However, we restricted the generation of PDPs to the following cases : i) the Area Under the Receiver Operating367

https://doi.org/10.23708/LV8GEW


Characteristics (AUC) (see below) of the model was > 0.6 (because model interpretation tools of ML models368

(e.g. PDPs) should be trusted only if the predictive power of the underlying model is good enough (Zhao369

and Hastie, 2021)) and ii) the range of predicted probabilities of resistance was > 0.05 (i.e. the independent370

variable, over its range of available values, changed the probability of resistance by at least 5 percentage points).371

372

Assessment of models performance. The explanatory power of the GLMM was assessed by calculating the373

marginal coefficient of determination (R
2
) (Nakagawa and Schielzeth, 2013) from the observed and in-sample374

predicted values. Marginal R
2
is a goodness-of-fit metric that measures the overall variance explained by the375

fixed effects in the GLMM. R
2
values were interpreted according to the criteria defined by Cohen (2013) : R

2
376

∈ {0; 0.02{ : very weak ; R2 ∈ {0.02; 0.13{ : weak ; R2 ∈ {0.13; 0.26{ : moderate ; R2 ∈ {0.26; 1} : substantial.377

The predictive power of the RF model was assessed by leave village - out cross-validation (CV), with the Area378

under the ROC Curve (AUC) chosen as the performance metric. This CV strategy consisted in recursively379

leaving-out the observations belonging to one village of collection (i.e. the validation fold), training the model380

with the observations coming from the other villages (i.e. the training fold), and predicting on the left-out381

set of observations. We hence measured the ability of the model to predict resistance status (‘resistant’ or382

‘non-resistant’) on individual mosquitoes caught on new - unseen villages of collection. AUC values were383

interpreted according to the following criteria : AUC ∈ {0.5; 0.6{ : very weak ; AUC ∈ {0.6; 0.65{ : weak ; AUC ∈384

{0.65; 0.75{ : moderate ; AUC ∈ {0.75; 1} : substantial.385

386

Box 1 : What is the difference between explanatory and predictive models, and how were

they used for inference in this study ?

Explanatory and predictive models serve distinct but complementary functions in the production

of scientific knowledge. In statistics, explanatory modeling refers to *«the application of statistical

models to data for testing causal hypotheses about theoretical constructs.»* (Shmueli, 2010).

Explanatory modeling, commonly used for inference in many scientific disciplines such as biology

or epidemiology, is useful to test existing theories and to reach to "statistical" conclusions about

causal relationships that exist at the theoretical level, e.g. : vector control significantly impacts vector

resistance (or not). Explanatory modeling needs transparent and interpretable models, such as

linear of logistic regression, to extract statistical information about the associations contained in the

data (e.g. effect size and statistical significance) and further discuss them. On its side, predictive

modeling is *«the process of applying a statistical model or data mining algorithm aimed at making

empirical predictions, and then assessing its predictive power.»* (Shmueli, 2010). Predictive modeling

requires models capable of capturing complex patterns in the data, including interactions and

non-linear associations, such as *machine learning* models like random forests or support vector

machines. Predictive analytics is typically recognised for its usefulness in practical applications,

such as predicting the incidence of diseases. However, it can also play a crucial role in scientific

knowledge production. For instance, predictive models can help generate new theories by capturing

and revealing potentially complex, unanticipated patterns within the data. They can as well be used to

evaluate the overall relevance of a theory, through the interpretation of the predictive power of the

models (Shmueli and Koppius, 2010). In a "big data" context like that of this study, with large datasets

containing numerous observations and variables, predictive analytics is increasingly used to sup-

port scientific theory development (Breiman, 2001b; Karpatne et al., 2017; Shmueli and Koppius, 2010).

In our study, we use explanatory modeling with GLMMs to i) test whether vector control significantly

increases vector resistance, as could be expected, and ii) infer the potential determinants of vector

resistance and their effect size. We use predictive modeling with RFs to i) account for potential

unhypothesized, complex associations between independent and dependent variables, and ii) infer

387



the overall contribution of the independent variables to the prevalence of vector resistance, allowing

at the same time to formulate hypotheses on other potential determinants.

388

Software and libraries used389

The softwares used in this work were exclusively free and open source. The R programming language (R Core390

Team, 2018) and the R-studio environment (RStudio Team, 2020) were used as the main programming tools.391

The QGIS software (QGIS Development Team, 2021) and the ‘ggplot2‘ R package (Wickham, 2016) were used392

to create respectively the map of the study area and the timeline for data collection. The ‘glmmTMB’ (Brooks393

et al., 2017) package was used for the bivariate modeling. The ‘buildmer’ package (Voeten, 2020) was used394

to fit the GLMM models with stepwise selection in the multivariate modeling. The ‘caret’ (Wing et al., 2018)395

and ‘ranger’ (Wright and Ziegler, 2017) packages were used to fit the random forest models in the multivariate396

modeling. The ‘MLmetrics’ (Yan, 2016) and ‘MuMIn’ (Bartoń, 2020) packages were used to calculate respectively397

the AUC of the RFs and the marginal R
2
of the GLMMs. The ‘jtools’ (Long, 2020) and ‘pdp’ (Greenwell, 2017)398

packages were used to generate the partial dependence plots of respectively the GLMMs and the RFs. The399

‘broom.mixed’ (Bolker and Robinson, 2020) package was used to extract the coefficients / odd ratios, confidence400

intervals and p-values of the multivariate GLMMs. The ‘patchwork’ (Pedersen, 2019) and ‘gridExtra’ (Auguie,401

2017) packages were used to create various plot compositions. The ‘tidyverse’ meta-package (Wickham, 2017)402

was used throughout the entire analysis. A few additional R packages were used to create, tidy, and transform403

the data used in this work (see (Taconet, Porciani, et al., 2021)). The LibreOffice suite was used to create the404

tables and other plot compositions.405

Results406

Spatio-temporal heterogeneity of vector abundance407

In the Korhogo area (IC), a total of 2048 human-nights of HLC was conducted. A sum of 57722 vectors belonging408

to the Anopheles genus was collected. The main species/complex found were An. gambiae s.l. and An. funestus409

(respectively 56267 (97% of all the Anopheles collected) and 714 (1%) individuals collected). Among the 56267410

An. gambiae s.l. collected, 3922 (7%) were identified to species: 3726 (95% of the individual identified to species)411

were An. gambiae s.s. and 196 (5%) were An. coluzzii. Hence, in the rest of this article, we will consider the412

An. gambiae s.l. collected in the Korhogo area as An. gambiae s.s. In the Diébougou area (BF), a total of 1512413

human-nights of HLC was conducted. A sum of 3056 vectors belonging to the Anopheles genus was collected.414

The main species found were An. coluzzii, An. gambiae s.s. and An. funestus (respectively 1321 (43% of all415

the Anopheles collected), 616 (20%) and 708 (23%) individuals collected). As expected, mosquito abundance416

was heterogeneous in time and space (except for An. funestus in IC, for which the vast majority (93 %) of417

the individuals was collected in the first entomological survey, and almost half of the individuals (42 %) were418

collected within one single village) (see additional file 1 and additional figure 3 for maps and charts of the419

spatiotemporal distribution of vector abundance).420

Spatio-temporal heterogeneity of vector resistance421

Table 2 and Figure 2 show, respectively, global and spatiotemporal descriptive statistics on the resistances of422

the main vector species collected in the two areas.423

424
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Figure 2. (Previous page) Spatio-temporal distributions of the physiological resistances and be-

havioural resistance phenotypes of the main vector species collected (panel A : temporal distribution,

panel B : spatial distribution). For behavioural resistance phenotypes, the y-axis represents the percentage of
mosquitoes with resistant phenotypes for the considered survey / village. For physiological resistances, the y-axis
represents the allele frequency of the considered mutation for the considered survey / village. Confidence intervals (A :
ribbons, B : lineranges) provide indicators of variability of the resistance indicator (A : mean ± standard deviation of
the resistance indicator calculated at the village level for the considered entomological survey ; B : mean ± standard
deviation of the resistance indicator calculated at the entomological survey level for the considered village). To avoid
excessive consideration of small sample sizes, the total number of mosquito collected was represented graphically
using the size of dots (A) or the color of the bars (B).

Table 2. (below) Descriptive statistics for the physiological resistances and behavioural resistance

phenotypes of the main vector species collected.

Resistance

indicator

Study area Species n° collected n° resistant % resistant Temporal

confidence

interval & range

Spatial

confidence

interval & range

An. gambiae s.l. 56267 31295 56 % ± 2 % (44 – 60) ± 7 %] (38 – 71)
Korhogo An. funestus 714 493 69 % ± 7 % (0 – 100) ± 16 % (0 – 100)

An. coluzzii 1321 577 44 % ± 5 % (38 – 64) ± 9 % (0 – 100)

An. gambiae s.s. 616 268 44 % ± 7 % (18 – 56) ± 12 % (0 – 75)

Exophagy

Diébougou

An. funestus 708 250 35 % ± 6 % (19 – 40) ± 8 % (0 – 100)

An. gambiae s.l. 56267 1670 3 % ± 1 % (1 – 6) ± 2 % (0 – 10)
Korhogo An. funestus 714 92 13 % ± 6 % (0 – 100) ± 12 % (0 – 100)

An. coluzzii 1321 28 2 % ± 1 % (0 – 4) ± 2 % (0 – 75)

An. gambiae s.s. 616 19 3 % ± 1 % (0 – 6) ± 3 % (0 – 14)

Early biting

Diébougou

An. funestus 708 9 1 % ± 1 % (0 – 2) ± 4 % (0 – 100)

An. gambiae s.l. 56267 499 1 % ± 0 % (0 – 1) ± 1 % (0 – 9)
Korhogo An. funestus 714 4 1 % ± 1 % (0 – 12) ± 1 % (0 – 7)

An. coluzzii 1321 46 3 % ± 3 % (0 – 14) ± 3 % (0 – 14)

An. gambiae s.s. 616 8 1 % ± 3 % (0 – 11) ± 5 % (0 – 100)

Late biting

Diebougou

An. funestus 708 82 12 % ± 3 % (0 – 22) ± 10 % (0 – 100)

An. coluzzii 1321 NA 59 % ± 5 % (55 – 69) ± 8 % (12 – 100)
Kdr-w mutation An. gambiae s.s. 616 NA 90 % ± 8 % (59 – 100) ± 9 % (68 – 100)

An. coluzzii 1321 NA 17 % ± 8 % (0 – 43) ± 10 % (0 – 50)
Kdr-e mutation An. gambiae s.s. 616 NA 4 % ± 4 % (0 – 19) ± 4 % (0 – 17)

An. coluzzii 1321 NA 2 % ± 1 % (0 – 7) ± 1 % (0 – 6)
Ace-1 mutation

Diébougou

An. gambiae s.s. 616 NA 21 % ± 6 % (11 – 50) ± 8 % (0 – 75)

Descriptive statistics for the physiological resistances and behavioural resistance phenotypes of the main vector
species collected, by area of interest. The columns ’Temporal confidence interval and range’ and ’Spatial confidence
interval and range’ provide indicators of the variability and range of resistance around the overall mean (percentage
resistant) respectively in time (i.e. variability between the entomological surveys) and space (i.e. variability between the
villages). Format of these columns: standard deviation (minimum – maximum). Computation of standard deviation :
to take into account the uneven sample size between entomological surveys (resp. villages) (i.e. to avoid excessive
consideration of small / very small sample size), confidence intervals for temporal (resp. spatial) variability were
extracted by first calculating the resistance indicator for each entomologial survey (resp. village) and then computing
the standard deviation weighted by the number of mosquitoes collected in each entomologial survey (resp. village).

Exophagy rates. In the Korhogo area (IC), the overall exophagy rate (% of bites received outdoor) was426

56 % for An. gambiae s.l. and 69 % for An. funestus. The exophagy rate of An. gambiae s.l. varied little, both427

amongst the entomological surveys and the villages (Temporal Standard Deviation (TSD) (see legend of Table428

2 for definition) = ± 2 %, Spatial Standard Deviation (SSD) (see legend of Table 2 for definition) = ± 7 %). The429



exophagy rate of An. funestus was more heterogeneously distributed in time and space (TSD = ± 7 %, SSD = ±430

16 %). In the Diebougou area (BF), the overall exophagy rate was 44 % for An. coluzzii, 44 % for An. gambiae431

s.s. and 35 % for An. funestus. For the three species, the exophagy rate varied quite sensibly among the en-432

tomological surveys (TSD = ± 5%, ± 7%, ± 6% respectively) and the villages (SSD = ± 9%, ± 12%, ± 8% respectively).433

434

Early and late biting rates. In the Korhogo area (IC), the early biting rate (i.e. % of bites received before 50%435

of the LLIN users were declared to be under their bednet at night) was 3% for An. gambiae s.l. and 13% for An.436

funestus. The early biting rate was overall stable among the surveys and villages for An. gambiae s.l. (TSD = ±437

1%, SSD = ± 2%) and was more heterogeneously distributed for An. funestus (TSD = ± 6%, SSD = ± 12%). The438

late biting rate (i.e. % of bites received after 50% of the LLIN users were declared to be out of their bednet439

in the morning) was lower than the early biting rate : 1% for both An. gambiae s.l. and An. funestus (only 4440

late-bites for An. funestus) and was overall stable among the surveys and villages (TSD = ± 0% and SSD = ± 1%441

for An. gambiae s.l.). In the Diébougou area (BF), the early biting rate was respectively 2%, 3% and 1% for An.442

coluzzii, An. gambiae s.s. and An. funestus. The early biting rate was overall stable among the surveys (TSD = ±443

1% for the three species) and to some extent more heterogeneous among the villages (SSD = ± 2%, ± 3%, ±444

4% respectively). The late biting rate was respectively 3%, 1% and 12% for An. coluzzii, An. gambiae s.s. and445

An. funestus. Late biting rates were more heterogeneously distributed than early biting rates, both among the446

surveys (TSD = ± 3% for the three species) and villages (SSD = ± 3%, ± 5%, ± 10% respectively).447

448

Allele frequencies of kdr-e, kdr-w, ace-1 mutations. In the BF area, the allele frequency of the kdr-w449

mutation was 90% for An. gambiae s.s. and 59% for An. coluzzii. It varied to some extent among the surveys and450

villages (for An. gambiae s.s. : TSD = 8%, SSD = 9% ; for An. coluzzii : TSD = 5%, SSD = 8%). The allele frequency451

of the kdr-emutation was 4% for An. gambiae s.s. and 17% for An. coluzzii. For An. gambiae s.s., it remained low452

among the surveys and villages (TSD = SSD = 4%) and for An. coluzzii, it varied more sensibly (TSD = 8%, SSD =453

10%). The allele frequency of the ace-1mutation was 21 % for An. gambiae s.s. and 2% for An. coluzzii. For An.454

gambiae s.s, it varied sensibly among the surveys and villages (TSD = 6%, SSD = 8%), and for An. coluzzii it was455

overall stably low (TSD = SSD = 1%).456

Dependent variables excluded from the modeling process457

Seven of the original twenty-one dependent variables were excluded before statistical modeling due to the458

very small size of their ‘resistant’ class (see Table 2) :459

• early-biting in BF for the three species,460

• late-biting in BF for An. coluzzii and An. gambiae s.s.,461

• late-biting in IC for An. funestus,462

• ace-1 in BF for An. coluzzii.463

Associations between physiological resistance and environmental variables464

For the remaining five models of physiological resistance in the Diébougou area (BF), Figure 3 shows the465

PDPs of the independent variables retained in the modeling workflow. For the GLMMs, numerical values of466

odd-ratios, 95% confidence intervals, and p-values are provided in Additional file 4.467
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Figure 3. (Previous page) Results of the statistical models of probability of physiological resistance in

the malaria vectors. For each model, the top plot shows the explanatory power (R2) and predictive power (AUC) of
respectively the GLMM and the RF model. The other plots show the predicted probabilities of collecting a resistant
vector across available values of each independent variable, holding everything else in the model equal (yellow line
: probability predicted by the GLMM model ; green line : probability predicted by the RF model). Non-significant
variables (p-value > 0.05) are not presented. Short methodological reminder : vector control and crops variables
were forced-in, and the other variables were retained only if they improved the AIC of the model. In addition, for the
GLMM models, the other variables were plotted only if their p-value was < 0.05. For the RF models, the predicted
probability (i.e. green line) was plotted only if the AUC of the model was > 0.6 and the range of predicted probabilities
of resistance for the considered variable was > 0.05. In these plots, the y-axis represents the probability for an allele
to be resistant. The red horizontal dashed line represents the overall rate of resistance (see Table 2). The p-values of
the GLMMs are indicated through the stars : * : p < 0.05, ** p < 0.01, *** p < 0.001. The coloured squared at the
bottom-right represents the ‘family‘ the variables belongs to (one color for each family, see legend inside the light
green frame placed on the left hand side of the plot). The grey squares distributed along the x-axis at the top and
bottom of each plot represent the measured values available in the data (the darker the square, the more the number
of observations) (NB : for atmospheric pressure, the values in the x-axis are centered around the mean)

Associations with variables encoding vector control interventions. No statistically significant association469

was found between the likelihood of collecting an Anopheles carrying any of the target-site mutations and the470

type of VC intervention (LLIN + complementary tool compared to LLIN only) within the time frame of the study.471

However, the likelihood of collecting a host-seeking An. gambiae s.s. or An. coluzzii carrying a resistant kdr-e472

allele increased with the time since LLIN distribution, and as well with the % of users of LLINs in the village473

population. Noteworthy, for both species the random forest models predicted a significant linear increase in474

the 12 first months after the distribution, and a slowdown in the increase from the 12th to the 21th month475

after LLIN distribution. Regarding the others target-site mutations (kdr-w or ace-1), the likelihood of collecting a476

host-seeking Anopheles carrying them did not increase with the time since LLIN distribution.477

478

Associations with variables encoding crops. No statistically significant association was found between the479

likelihood of collecting a host-seeking Anopheles carrying any of the target-site mutations and the % of land-480

scape occupied by crop fields (cotton, rice, or other crops) in a 2 km-wide buffer area around the collection point.481

482

Associations with variables encoding micro-climate at the time (hour) of foraging activity. Positive asso-483

ciations were found between the likelihood of collecting a host-seeking An. coluzzii carrying the kdr-emutation484

and atmospheric pressure, humidity and temperature at the time of collection, as well as that of collecting an485

An. gambiae s.s. carrying the kdr-emutation and atmospheric pressure at the time of collection. A negative486

association was found between the likelihood of collecting a host-seeking An. gambiae s.s. carrying the kdr-w487

mutation and humidity at the time of collection.488

489

Associations with variables encoding meteorological conditions during the month preceding collection.490

Negative associations were found between the likelihood of collecting a host-seeking : An. coluzzii carrying the491

kdr-w mutation and cumulated rainfall, An. gambiae s.s. carrying the kdr-w mutation and both cum. rainfall and492

mean diurnal temperatures, An. coluzzii carrying the kdr-emutation and mean nocturnal temperatures, An.493

gambiae s.s. carrying ace-1mutation and both mean diurnal and nocturnal temperatures during the month494

preceding collection. A positive association was found between the likelihood of collecting a host-seeking An.495

coluzzii carrying the kdr-emutation and cumulated rainfall.496

497

***Association with variables encoding genotype for other insecticide resistance target-site mutations.***498

The likelihood of collecting a host-seeking *An. gambiae s.s.* or *An. coluzzii* carrying a resistant kdr-e allele499



was negatively associated with the number of mutated *kdr-w* alleles in the collected mosquito. Conversely,500

the likelihood of collecting a host-seeking *An. gambiae s.s.* carrying a resistant *Ace-1* allele was higher in501

individuals also carrying *kdr-w* mutated alleles.502

Associations between behavioural resistance phenotypes and environmental vari-503

ables504

For the remaining nine models of behavioural resistance phenotypes, Figure 4 shows the PDPs of the inde-505

pendent variables retained in the modeling workflow. For the GLMMs, numerical values of odd-ratios, 95%506

confidence intervals and p-values are provided in Additional file 4.507



  

M
o

d
el

 
ev

al
u

at
io

n
E

ff
ec

t 
o

f 
ve

ct
o

r 
co

n
tr

o
l v

ar
ia

b
le

s
E

ff
ec

t 
o

f 
 L

LI
N

 u
se

 a
n

d
 e

n
vi

ro
n

m
e

n
ta

l v
ar

ia
b

le
s

Exophagy
(probability for a host-seeking mosquito to bite outdoor)

Diébougou (BF)M
o

d
e

l

An. funestus An. coluzzii An. gambiae s.s.

Korhogo (IC)

An. gambiae s.s. An. funestus

Micro-climate

Meteorology

Landscape

Vector resistance

Host availability

Variable family

Variable effect (model)

GLMM (+ 95% IC)

RF

Avg. obs. prob.

temp.

temp.

temp.

;

508



  

M
o

d
el

 
ev

al
u

at
io

n
E

ff
ec

t 
o

f 
ve

ct
o

r 
co

n
tr

o
l v

ar
ia

b
le

s
E

ff
ec

t 
o

f 
 L

L
IN

 u
se

 a
n

d
 e

n
vi

ro
n

m
e

n
ta

l v
ar

ia
b

le
s

Early biting
(probability for mosquito to bite before 50 % 

of the pop. of the village was declared to be asleep)
M

o
d

e
l

An. gambiae s.s.* An. funestus

Korhogo (IC)

An. gambiae s.s. An. funestus

Diébougou (BF)

Meteorology

Vector resistance

Variable family

Micro-climate

Landscape

Host availability

Variable effect (model)

GLMM (+ 95% IC)

RF

Late biting
(probability for a mosquito to bite after 50 % 

of the pop. of the village was declared to be asleep)

Here y(max) = 0,25 (not 1)

Korhogo (IC)

Avg. obs. prob.

Here y(max) = 0,25 (not 1)

509



Figure 4. (Previous page) Results of the statistical models of probability of behavioural resistance

phenotypes in the malaria vectors. For each model, the top plot shows the explanatory power (R2) and
predictive power (AUC) of respectively the GLMM and the RF model. The other plots show the predicted probabilities
of collecting a resistant vector across available values of each independent variable, holding everything else in the
model equal (yellow line : probability predicted by the GLMM model ; green line : probability predicted by the RF
model). Non-significant variables (p-value > 0.05) are not presented. Short methodological reminder : vector control
variables were forced-in, and the other variables were retained only if they improved the AIC of the model. In addition,
other variables were plotted only if their p-value was < 0.05. For the RF models, the predicted probability (i.e. green
line) was plotted only if the AUC of the model was > 0.6 and the range of predicted probabilities of resistance for the
considered variable was > 0.05. In these plots, the y-axis represents the probability for a mosquito to be resistant.
The red horizontal dashed line represents the overall rate of resistance (see Table 2). The p-values of the GLMMs
are indicated through the stars * : p < 0.05, ** p < 0.01, *** p < 0.001. The coloured squared at the bottom-right
represents the ‘family‘ the variable belongs to (one color for each family, see legend inside the light green frame placed
on the left hand side of the plot). The grey squares distributed along the x-axis at the top and bottom of each plot
represent the measured values available in the data (the darker the square, the more the number of observations)
(NB : for atmospheric pressure, the values in the x-axis are centered around the mean).

Associations with variables encoding vector control interventions. No statistically significant association510

was found between the likelihood of collecting an exophagic, early- or late- biting Anopheles and neither the511

type of VC intervention (LLIN + complementary tool compared to LLIN only) nor the time since LLIN distribution512

within the time frame of the study.513

514

Associations with variables encoding host availability. In the Korhogo area (IC), the likelihood of exophagy515

of An. gambiae s.s. slightly increased with the % of the population under an LLIN at the time of collection. The516

likelihood of early-biting of An. gambiae s.s. increased with the % of users of LLINs in the village population. In517

the Diébougou (BF) area, the likelihood of exophagy of An. funestus increased with the % of the population518

under an LLIN at the time of collection.519

520

Associations with variables encoding landscape. In the Korhogo area (IC), the likelihood of exophagy of521

An. funestus increased with increasing distance to the edge of the village. The likelihood of early-biting of An.522

gambiae s.s. decreased with increasing distance to the edge of the village. In the Diébougou (BF) area, the523

likelihood of exophagy of An. coluzzii increased with increasing distance to the nearest stream.524

525

Associations with variables encoding micro-climate at the time (hour) of foraging activity. In the Korhogo526

area (IC), the likelihood of exophagy of An. gambiae s.s. decreased when humidity indoors increased and when527

humidity got relatively higher indoors compared to outdoors. In addition, it increased when luminosity got528

relatively higher indoors compared to outdoors. In the Diébougou area (BF), the likelihood of exophagy of An.529

funestus increased when temperature or humidity got relatively higher indoors compared to outdoors.530

531

Associations with variables encoding meteorological conditions on the day or night of collection. Positive532

associations were found between the likelihood of : exophagy of An. coluzzii and rainfall (BF area), early-biting533

of An. gambiae s.s. and temperature (IC area), late-biting of An. gambiae s.s. and both rainfall and temperature534

(IC area), late-biting of An. funestus and temperature (BF area). A negative association was found between the535

likelihood of exophagy of An. gambiae s.s. and rainfall (IC area).536

537

Associations with variables encoding meteorological conditions during the month preceding collection.538

Negative associations were found between the likelihood of : exophagy of An. gambiae s.s. and both cumulated539

rainfall and mean diurnal temperatures (IC area), exophagy of An. coluzzii and mean nocturnal temperatures540



(BF area), late biting of An. gambiae s.s. and mean nocturnal temperature (IC area). A positive association was541

found between the likelihood of exophagy of An. gambiae s.s. and mean nocturnal temperatures (BF area).542

543

Associations with variables encoding physiological resistances. As a reminder, the genotypes for the544

target-site mutations of individual collected mosquitoes were introduced as independent variables in the545

behavioural resistance phenotypes models in the Diébougou area (BF). Here, these variables were not retained546

in the variable selection procedure, i.e. no statistically significant association was found between any of the547

behavioural resistance indicator and kdr-w, kdr-e, or ace-1mutations.548

Explanatory and predictive power of the statistical models549

Additional figure 5 provides boxplots of observed resistance status vs. predicted probabilities by each model.550

551

Exophagy. For the models of exophagy, the explanatory power of the GLMMmodels was : ‘very weak’ for An.552

gambiae s.s. in the Korhogo area (IC), ‘moderate’ for An. funestus in the Korhogo area (IC)‘, weak’ for An. funestus,553

An. coluzzii and An. gambiae s.s. in the Diébougou area (BF). The predictive power of the RF models of exophagy554

was ‘very weak’ for all the species in the two study areas.555

556

Early and late biting. For the models of early biting, the explanatory power of the GLMM models was ‘weak’557

for both An. gambiae s.s. and An. funestus in the Korhogo area (IC). For the models of late biting, the explanatory558

power of the GLMM was ‘weak’ for An. gambiae s.s. in the Korhogo area (IC) and ‘substantial’ for An. funestus in559

the Diébougou area (BF). The predictive power of the RF models of early and late biting was ‘very weak’ for all560

species in the two study areas, except for the model of late biting of An. gambiae s.s. in the Korhogo area (IC)561

for which it was ‘weak’.562

563

Kdr-w, kdr-e, ace-1. For the kdr-w mutation in the Diébougou area (BF), the explanatory power of the GLMM564

models was ‘weak’ for An. coluzzii and ‘substantial’ for An. gambiae s.s. ; and the predictive power of the RF565

models was ‘weak’ for An. coluzzii and ‘moderate’ for An. gambiae s.s. For the kdr-emutation in the Diébougou566

area (BF), the explanatory power of the GLMMmodels was ‘substantial’ for both An. coluzzii and An. gambiae s.s.567

; and the predictive power of the RF models was ‘moderate’ for An. coluzzii and ‘weak’ for An. gambiae s.s. For568

the ace-1mutation in the Diébougou area (BF), the explanatory power of the GLMMmodels was ‘weak’ for An.569

gambiae s.s. ; and the predictive power of the RF model was ‘very weak’.570

Discussion571

In this data mining exercice, we studied indicators of physiological and behavioural resistance phenotypes572

of several malaria vectors in rural West-Africa at a fine spatial scale (approximately the extent of a health573

district), using longitudinal data collected in two areas belonging to two different countries, respectively 27574

and 28 villages per area, and across 1.25 to 1.5 year. The objectives were to describe the spatial and temporal575

heterogeneity of vector resistance, and to better understand their drivers, at scales that are consistent with576

operational action. To our knowledge, our work is the first studying the heterogeneity of vector resistance at577

such fine spatial scale with such a large dataset of mosquito collection and potential drivers of resistance. In578

this discussion, we first use our results to provide elements of answers to the questions raised in introduction579

of this article. We then discuss some implications of the findings for the management of vector resistance in580

our areas.581



Physiological resistances: potential drivers and spatiotemporal heterogeneity582

The main drivers of physiological resistances are insecticides, used either in public health for vector control or583

in agriculture (see Introduction). In this study, we found that the probability of collecting a host-seeking An.584

gambiae s.s. or An. coluzzii in the Diébougou area carrying a kdr-e resistant allele significantly increased with585

both the time since LLIN distribution (up to 12 months after distribution) and the % of LLIN users in the village586

population. PermaNet 2.0 LLINs have been shown to retain their insecticidal efficacy under field conditions for587

at least one year after distribution (Djènontin, Alfa, et al., 2023; Kayedi et al., 2017; Kilian et al., 2008; Tan et al.,588

2016) , exerting high selective pressure on vectors over this period at least. In contrast, there was no significant589

association between any of the target-site mutations and any of the crop-related variable. Altogether, This590

could indicate thatwithin the spatiotemporal frame of our study, the selection of the kdr-e mutation in591

the vector population was more likely due to insecticides used in public health than pesticides used592

in agriculture. In Burkina Faso, pesticides are widely used for cotton and sugar cane (Ouedraogo et al., 2011),593

but only in lesser proportions in market gardening and cereal production (maize and rice are the only cereals594

that are treated to a significant extent (MERSI et al., 2016)). Here, in the 2-km wide buffer zones around our595

collection points crops occupied up to 40 % of the total land, but were mainly made of leguminous crops, millet,596

sorghum, with cotton and rice being only marginally present. Hence, pesticides are likely not much used (field597

surveys regarding the use of pesticides by the farmers could confirm this hypothesis). This could explain the598

absence of association between target-site mutations and the crops-related variables. Noteworthy, the fact that599

there was no increase in the probability of collecting an *An. gambiae s.l.* carrying a *kdr-e* resistant allele 12600

months post-LLIN distribution, as indicated by the RF model, could be attributed to a potential decrease in601

LLIN insecticidal efficacy after this period (Tan et al., 2016) , resulting in lower selection pressure. Finally, the602

kdr-w and ace-1mutations did not increase significantly with the time since LLIN distribution. The absence of603

increase of the kdr-w mutation may be explained by its very high baseline allelic frequencies ; while that of the604

ace-1mutation may be explained by the type of insecticide used to impregnate the LLINs - deltamethrin, which605

does not select the ace-1 mutation.606

607

The statistical models captured many associations between the likelihood of collecting a physiologically608

resistant Anopheles and the variables encoding weather, both during the month preceding collection and609

at the hour of collection. These associations could traduce biological costs/advantages associated with610

target-sitemutations, both in terms of fitness and activity, as found elsewhere for other mosquito species611

(Kliot and Ghanim, 2012). Regarding fitness, we found that the likelihood of collecting a host-seeking mosquito612

(An. gambiae s.s. or An. coluzzii) carrying a mutated allele, overall, decreased (to varying extents depending613

on the species and mutation) when diurnal or noctural temperatures during the month preceding collection614

got higher, i.e. in the hottest periods of the year (corresponding to the months of March-April). Carrying a615

kdr mutation might be associated with a decreased propensity to locate optimal temperatures, potentially616

resulting in a decreased longevity, fecundity, or ovarian development rates (Foster et al., 2003). Regarding617

activity, we observed that the likelihood of collecting a mosquito carrying a mutated allele (for the kdr-e618

mutation) decreased when atmospheric pressure, humidity, or temperature at the hour of collection got lower619

; implying that mosquitoes carrying the kdr-emutation could be less active in colder or drier conditions, or620

when atmospheric pressure is lower. Noteworthy, our results could also be interpreted in terms of fitness621

advantages instead of fitness costs: for instance, some studies have highlighted fitness advantages (e.g. for622

longevity) of the *kdr-w* mutation in *An. gambiae s.l.* in laboratory conditions (Alout et al., 2016; Medjigbodo,623

Djogbénou, et al., 2021).624

625

We also found interactions between some target-site mutations. Indeed, as the *kdr-e* and *kdr-w* are626

mutations of the same base pair, the allelic frequency of the *kdr-e* mutation was negatively correlated627

with the allelic frequency of the *kdr-w* mutation in both *An. gambiae s.s.* and *An. coluzzii*. We also628

found a positive relationship between the allelic frequencies of the *Ace-1* and *kdr-w* mutations in *An.629



gambiae s.s.* This is consistent with laboratory observations in *Culex Quinquefasciatus* and *An. gambiae630

s.s.* showing that the cost of the *Ace-1* mutation is reduced in presence of the kdr mutation (Assogba et al.,631

2014; Berticat et al., 2008; Medjigbodo, Sonounameto, et al., 2021).632

633

Lastly, we observed that the allelic frequencies of the target-site mutations, within each vector species and634

for each mutation, were overall quite stable across the villages and seasons within the spatiotemporal frame635

of the study. At larger spatial and temporal scales, physiological resistances were found more heterogeneous636

(Moyes et al., 2020). In our study, such homogeneity might be due to a relative homogeneity in space and637

time of the main determinants of physiological resistance (access and use of insecticide-based vector control638

interventions). The quite stable rates of physiological resistance throughout the seasons might traduce the639

fact that the possible fitness costs/advantages are likely rather limited, within the range of meteorological640

conditions in our area.641

Behavioural resistance phenotypes: potential drivers and spatiotemporal heterogene-642

ity643

An important and pending question is the genetic (constitutive) or plastic (inducible) nature of behavioural644

resistances (see Introduction). In this study, we found no statistically significant association between any of645

the indicators of behavioural resistance phenotypes and neither the time since LLIN distribution nor the VC646

tool implemented. There was hence no evidence of growing frequencies of behavioural resistances (exophagy,647

early- and late-biting) in response to vector control within the 1.25 to 1.5 years of this study, i.e. no clear648

indication of constitutive resistance.649

650

Nonetheless, comparison of the exophagic phenotype rates found here with those of previous studies in651

the same countries, suggests that there may still be a genetic component to mosquito foraging behaviour.652

Indeed, the exophagy rates measured here tended to be higher than those historically reported for these653

species. For example, a recent review of An. gambiae s.l. \textcolor{LimeGreen}{biting behaviour from a range654

of African countries between 2000 and 2018 concluded that during this time period, ~ 80% of the vectors bite655

occured indoor (all countries included) and in particular ~ 75% in Burkina Faso} (Sherrard-Smith et al., 2019)656

\textcolor{LimeGreen}{(hence respectively ~ 20% and 25% outdoor). Here we measured substantially higher657

levels of exophagy : 44% (range ~ 18-56%) in the Diébougou (BF) area and 56% (44–60%) in the Korhogo (IC)658

area. Other recent studies, contemporaneous to ours, have found relatively high levels of exophagy for An.659

gambiae s.l. in rural areas, e.g. 54% in southwestern Burkina Faso} (Sanou et al., 2021) \textcolor{LimeGreen}{or660

55% in Ivory Coast (Assouho et al., 2020). Such high levels of outdoor biting, in comparison with past levels,661

suggest that behavioural adaptations may be ongoing in the study areas, most probably in response to the662

widespread and prolonged use of insecticide-based vector control tools.}663

664

We also found many statistically significant associations between the likelihood of collecting a behaviourally665

resistant phenotype and the meteorological conditions during the month preceding collection. This might666

indicate that these phenotypes could be induced by past environmental conditions, acting at the adult or larval667

stage, or through paternal/maternal effect. Such relationships between environmental condition at the larval668

stage and adult behaviour have indeed been observed in other insects [Müller et al. (2016), and ref cited in).669

670

The hypothesis of a hereditary component in the behaviour of malaria vectors (at least for the biting671

hour) is supported by a recent study which has observed, for Anopheles arabiensis in Tanzania, that F2 from672

early-biting F0 (grandmothers) were - to some extent - more likely to bite early than F2 from mid or late-biting673

F0 (Govella et al., 2023). Under this hypothesis, the relationship between the prevalence of behaviourally674

resistant phenotypes and the meteorological conditions during the month preceding collection could indicates675

a cost/advantage, at the adult, larval or both stages, of their associated genotypes.676



677

In our study, the absence of significant association between the probability of behavioural resistances and678

insecticide-related variables might be due to the relatively short length of the study (2 years). In a similar study679

conducted in another region of Burkina Faso over a two-year period as well, researchers recorded, as we have,680

no changes in the biting behaviour of *Anopheles gambiae s.l.*, including early biting, exophagy, and exophily,681

throughout the duration of the study (Sanou et al., 2021). Although resistance phenotypes can emerge in this682

time frame (Moiroux, Gomez, et al., 2012), a recent (almost) 4-years-study in Tanzania (Kreppel et al., 2020)683

detected shifts in vector behaviour (i.e. increased rate of exophily for *An. arabiensis* and *An. funestus*)684

that could be obscured in shorter-term surveys, in agreement with the hypothesis that mosquito behaviours685

are likely complex multigenic traits (Main et al., 2016) and might therefore respond slowly to selection (at686

least, slower than target-site mutations, which are linked to single genes and may hence respond rapidly687

and efficiently to selection). Anyhow, the results of these various longitudinal studies suggest that long-term688

monitoring of vector behaviour (> 2 years), particularly in areas with a long history of use of insecticides in689

public health, is critical to better understand the biological mechanisms underlying behavioural resistances,690

to potentially assess their development rate, and more broadly to assess residual malaria transmission risk691

(Durnez and Coosemans, 2013; Kreppel et al., 2020; Sanou et al., 2021).692

693

Weather can impact the fitness of possible genotypes associated with behavioural resistant phenotypes,694

but may also directly influence the time and location of foraging activity (see Introduction for more details).695

Here, we found many associations between mosquito host-seeking behaviour and variables representing696

meteorological conditions on the day or at the hour of collection. For instance, the probability for an An.697

gambiae s.s. to be collected outdoor in the Korhogo area increased when the air indoor was dry, or when698

the air outdoor became relatively more humid than indoor. Likewise, in the Diébougou area, the probability699

for an An. funestus to be collected outdoor increased when the air outdoor became relatively cooler than700

indoor. These observations are consistent with the hypothesis of mosquitoes shifting from indoor to outdoor701

host-seeking in case of desiccation-related mortality risk indoors, as observed and discussed elsewhere (Kessler702

and Guerin, 2008; Kreppel et al., 2020; Ngowo et al., 2017). The meteorological conditions seemed to cause703

not only spatial, but also temporal shifts in host-seeking activity. For instance, we found that the probability704

of collecting a late-biting An. gambiae s.s. in the Korhogo area increased when the noctural temperature705

increased. Several associations also suggest that some malaria vectors may modify their behaviour in response706

to environmental variation that reduces host availability, as hypothesized elsewhere (Durnez and Coosemans,707

2013). For instance, the likelihood of collecting an An. gambiae s.s. (in the Korhogo area) or an An. funestus (in708

the BF area) outdoor increased at hours when people were protected by their LLINs. Likewise, the likelihood of709

collecting an early-biting An. gambiae s.s. in the Korhogo area increased when the % of LLIN users in the village710

increased. Altogether, all these associations suggest that in our study areasmosquito foraging behaviour711

is driven – to a certain extent - by environmental conditions at the time of foraging activity, i.e. that712

vectors likely modify their time or place of biting according to climatic conditions or host availability. The many713

associations that were captured here in field conditions could be further tested experimentally, to quantify714

their effect more precisely and validate the underlying biological hypothesis.715

716

Although many significant associations between environmental parameters and foraging behaviours have717

been captured by the models, their explanatory and predictive powers were overall weak. A low explanatory718

power can indicate either i) that variations in the dependent variable (here, individual vector resistance) are719

only marginally caused by the independent variables or ii) that the statistical model does not capture properly720

the true nature of the underlying relationships between the studied effect and its drivers (Karpatne et al.,721

2017) (e.g. a linear regression cannot, by definition, capture non-linear relationships that might exist in nature).722

Here, we minimized the risk of omitting important, complex associations by using, complementarily to the723

binomial regression model, a machine-learning model (namely a random forest) that is inherently able to724



capture complex patterns contained in the data if any (e.g. non-linear relationships, interactions) (Breiman,725

2001a). Still, the models had low predictive powers. Altogether, these results indicate that very likely, despite726

the amount, granularity and diversity of potential factors measured and introduced in the models, most of the727

factors driving the individual host-seeking behaviours of the mosquitoes were not introduced in the models.728

Another possibility could be that some of our independent variables did not represent the actual “reality” in the729

field (e.g. the distance to the nearest stream is not necessary an ideal proxy for the distance to the breeding730

site). Nevertheless, since we used a wide range of variables encoding the environmental conditions at the time731

of foraging activity, we can hypothesize that within the spatiotemporal frame of the study,mosquito foraging732

behaviour was only marginally driven by environmental variations. This leaves the floor to other factors,733

like genetics (see above), learning, or randomness.734

735

To test whether physiological resistance impacts the behaviour of host-seeking mosquitoes, we introduced736

in the behaviour resistance models of An. coluzzii and An. gambiae s.s. in the Diébougou area two variables737

encoding the genotypes for respectively the kdr-w and kdr-e mutations. No statistically significant associa-738

tion was found. In other words, we could not find, in the field, a behavioural phenotype (among those739

studied, i.e. exophagy, early- and late-biting) associated with a genotype for one of the target-site mu-740

tations. The only study, to our knowledge, having investigated the relationship between the kdr mutation741

and biting time or location in the field has also reported no statistically significant association between these742

two mechanisms of resistance to insecticide (Djènontin, Bouraima, et al., 2021). Noteworthy, in our study,743

there was few variabilities in the genotypes of the collected mosquitoes (i.e. few homozygote susceptible744

mosquitoes captured, particularly for the kdr-wmutation), making it unfavorable to detect assocations between745

physiological and behavioural resistances. In the Korhogo area, such analysis could not be performed because746

physiological resistance data was not available at the individual mosquito level.747

748

Finally, we observed that the behavioural resistance phenotypes rates for each vector species in each health749

district were, overall, relatively homogeneous across the villages and seasons within the spatiotemporal frame750

of the study (as for physiological resistances). This could mean that the overall dynamics of behavioural751

resistance occur at broader spatial and temporal scales than those of our study. At larger scales (i.e. among752

countries and across years in Africa), exophagy rates of Anopheles mosquitoes seem, actually, to be more753

variable (Sherrard-Smith et al., 2019).754

Implications of the findings for the management of vector resistance in the study755

areas756

Long-lasting insecticidal nets have undoubtedly played a major role in reducing malaria cases throughout757

Africa, thanks both to their barrier and killing effects. More locally, we highlighted the efficacy of their barrier758

role in the Diébougou area by showing that, for their users, they prevented more than 80% of Anopheles bite759

exposure in the area (Soma, Zogo, Taconet, et al., 2021). However, despite these successes, many studies760

strongly suggest that the insecticides they are impregnated with are responsible for the rise of physiological761

resistances in the malaria vectors susceptible populations (see Introduction). In our study, the positive and762

significant associations found between the probability to collect a physiologically resistant mosquito and763

LLIN-related variables (time since LLIN distribution, LLIN use rate) supports these findings. We also highlighted764

that in response to an LLIN distribution, physiological resistance seems to grow quite rapidly in a susceptible765

population. Besides the selection of physiological resistance, comparison with historical data suggests that the766

vectors may also be progressively changing their feeding behaviour to avoid the effects of the insecticides -767

although there was no clear evidence of this in the strict context of this study. Such trends in vector resistance768

may have an important epidemiological impact (Sherrard-Smith et al., 2019). Altogether, these results show,769

if still necessary, that we urgently need to think more strategically about our use of insecticides in public770

health tools in our areas. Switching to alternative insecticides, rotating or mixing insecticides, using current771



or novel insecticides in vector control tools others than long-lasting nets, entirely removing the insecticides772

from the vector control toolbox, or fostering the use of insecticidal-free tools, are all actions that could be773

envisaged (Paaijmans and Huijben, 2020). Burkina Faso has, actually, distributed LLINs that mixes pyrethroid774

with Piperonyl butoxide (PBO) in the last universal LLIN distribution, in 2019.775

776

Here, we observed that both behavioural and physiological resistances of mosquitoes were quite stable777

across the villages and seasons within the spatiotemporal frame of the study. This contrasts with their biting778

rates, which was found, in another study (Taconet, Porciani, et al., 2021), highly variable across the villages,779

seasons, and amongst the species. This calls for distinct spatio-temporal management of interventions targeted780

at reducing human-vector contact and reducing resistance selection (both essential) in the field. While the781

former should be highly locally tailored (i.e. specific to each village and season) (Taconet, Porciani, et al., 2021) ,782

the latter, due to its stability across villages and seasons, would probably not benefit significantly from being783

customized at these spatio-temporal scales in our areas. In other words, while resistance management plans784

are undoubtedly urgently needed, there is no compelling evidence – in the current state of the knowledge -785

that they should be tailored at very fine scales (village, season). Noteworthy, mosquitoes were collected during786

the dry season and at the beginning and end of the rainy season, but, for logistical reasons, not at the peak of787

the rainy season (and therefore not at the likely peak of mosquito abundance). It would be worth collecting788

mosquitoes at this season to confirm the observed resistance rates.789

Conclusion790

In an attempt to better understand the drivers of the intensity and spatio-temporal heterogeneity of physio-791

logical (genotypes) and behavioural (phenotypes) resistance in malaria vectors, at the scale of a rural health792

district over a period of 1.5 years, we have mainly (i) shown that resistance (both physiological and behavioural)793

was quite homogeneous across the villages and seasons at theses scales, and (ii) hypothesized that at these794

spatiotemporal scales, vector resistance seemed to be only marginally driven by environmental factors other795

than those linked to insecticide use in current vector control. Following the distribution of LLINs, the rapid796

widespread of physiological resistance occurring in tandemwith probable lower acting behavioural adaptations,797

are very likely contributing to the erosion of insecticide efficacy on malaria vectors. We believe that without798

waiting to understand precisely the underlying drivers, mechanisms, and rates of selection of resistances, the799

malaria control community needs to think very strategically about the use and usefulness of current and novel800

insecticide-based control interventions.801
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