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Abstract 1

2

The Sylvatub system is a national surveillance program established in 2011 in France to monitor infections

caused by Mycobacterium bovis, the main etiologic agent of bovine tuberculosis, in wild species. This

participatory program, involving both national and local stakeholders, allowed us to monitor the progression

of the infection in three badger populations in clusters covering between 3222 km2 and 7698 km2 from 2013

to 2019. In each cluster, badgers were trapped and tested for M. bovis. Our first aim was to describe the

dynamics of the infection in these clusters. We developed a Bayesian model of prevalence accounting for the

spatial structure of the cases, the imperfect and variable sensitivity of the diagnostic tests, and the correlation

of the infection status of badgers in the same commune caused by local factors (e.g., social structure and

proximity to infected farms). This model revealed that the prevalence increased with time in one cluster

(Dordogne/Charentes), decreased in the second cluster (Burgundy), and remained stable in the third cluster

(Bearn). In all the clusters, the infection was strongly spatially structured, whereas the mean correlation

between the infection status of the animals trapped in the same commune was negligible. Our second aim

was to develop indicators for monitoring M. bovis infection by stakeholders of the program. We used the

model to estimate, in each cluster, (i) the mean prevalence level at mid-period, and (ii) the proportion of

the badger population that became infected in one year. We then derived two indicators of these two key

quantities from a much simpler regression model, and we showed how these two indicators could be easily

used to monitor the infection in the three clusters. We showed with simulations that these two simpler

indicators were good approximations of these key quantities.
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Introduction 24

Mycobacterium bovis is a bacterium that can be transmitted to several domestic and wild species, and to 25

humans. It is themain aetiologic
:::::::
etiologic agent for bovine Tuberculosis

::::::::::
tuberculosis

:
(bTB), a regulated disease 26

that is still detected in cattle in different European countries. When a farm is detected infected, different 27

control measures can be applied depending on the country and the specific situation of the farm, including the 28

slaughtering of the herd. France is officially free from
:::
has

::::
been

::::::::
officially

::::
free

::
of bTB since 2001 (Delavenne, 29

Pandolfi, et al., 2019), as less than 0.1% of cattle herds are infected annually. In certain parts of the country, 30

infection is still regularly detected in
:::
on cattle farms and in wild species, mainly

::
in wild boars and badgers. 31

The main factor of persistence is the cattle-to-cattle transmission through between-herd contacts
:::::::
contact 32

(Marsot et al., 2016; Palisson et al., 2016). However, in some areas, a complex multi-host
::::::::
multihost system can 33

explain the circulation of M. bovis between the different compartments though so far
::::::::
different

:::::::::::::
compartments 34

(domestic species, wild species and the environment, Réveillaud et al., 2018);
::::::::
however, even if badgers and wild 35

boars are able to transmit M. bovis infection to cattle, these species are not considered long-term maintenance 36

hosts in the bTB endemic areas in France (Payne, 2014). 37

38

However, due to an increasing number of M. bovis cases in wild species, a national surveillance programme 39

of
:::::::
program

:::
for

:
M. bovis in wildlife named ‘Sylvatub’ has been

:::
was launched in September 2011 (Réveillaud et al., 40

2018; Rivière et al., 2012). This programme aims at detecting and monitoring
:::::::
program

:::::
aims

::
to

::::::
detect

::::
and 41

:::::::
monitorM. bovis infection

::::::::
infections in wild species such as wild boar (Sus scrofa), red deer (Cervus elaphus), roe 42

deer (Capreolus capreolus) and European badger (Meles meles) populations, by means of both event-based and 43

targeted surveillance strategies. Sylvatub is a participatory monitoring programme
:::::::
program

:
(sensu Danielsen 44

et al., 2003), i.e. carried out with the help of local stakeholders such as hunters associations, pest control offi- 45

cers, trapper associations, veterinary associations, livestock health defense associations and epidemiologists 46

(Réveillaud et al., 2018). Brieflyhere, depending on the assessed bTB risk in a given department (French admin- 47

istrative division), three levels of surveillance can be implemented. Level 1 is implemented in a department if 48

no domestic or wild animal has been found infected (relying on the post-mortem
:
to

:::
be

:::::::
infected

:::::::::
(according

:::
to 49

:::
the

:::::::::::
postmortem examination of hunted or found dead animals). Levels 2 and 3, which are of interest for us in 50

this study, are implemented in departments with sporadic outbreaks in cattle (level 2) and in departments with 51

several outbreaks in cattle and/or cases in wildlife (level 3). In level 3 departments, an at-risk area is defined. 52

This at-risk area is composed of an infected area (communes where the infection has been detected in domestic 53

and/or wild animals – a commune being the smallest French administrative subdivision,
::::
with

:::::::
median

::::
area

:::
of 54

::
12

::::
km2) and a buffer zone (communes neighbouring

:::::::::::
neighboring the infected areas). Trapping is carried out 55

in all the communes of the at-risk area. In level 2 departments, a prospection zone is defined within 2 km 56

from the pastures of infected farms and trapping is restricted to this area (for details, see Réveillaud et al., 2018). 57

58

Three main clusters of M. bovis infection have been discovered in France during the last 20 years in bad- 59

ger and wild boar populations following an increased prevalence in
::
on

:
cattle farms (Delavenne, Pandolfi, 60

et al., 2019) and are being followed up by Sylvatub: Burgundy (initially discovered in wild boar in 2002, and 61

in badgers afterwards
::::::::
afterward), Dordogne/Charentes (initially discovered in red deer in 2010, and in wild 62

boar and badgers afterwards
::::::::
afterward), and Bearn (initially discovered in wild boar in 2005 and in badgers 63

afterwards
::::::::
afterward; Fig 2D). The data collected by this programme

:::::::
program

:
are used to monitor the spatial 64

extension
:::::
extent of the infection as well as its progression within these already infected wild populations, by 65

estimating the prevalence level of the infection in badgers in the different clusters. Since the prevalence is 66

simply the proportion of the population that is infected, it is easily understood by non-specialist
:::::::::::
nonspecialist 67

local communities, which is important to keep stakeholders informed and involved in the programme
:::::::
program. 68

Of course, cattle bTB prevalence and incidence are key stone parameters to follow, especially
:::::::::
parameters

:::
to 69

:::::::
monitor,

:::::::::
especially

:::::
when

:::::::::
attempting

:
to maintain the national official free status, but

:::::::
bTB-free

::::::
status;

::::::::
however, 70
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because of the multi-host
::::::::
multihost system in place, the sole monitoring of cattle prevalence would not

:::::
alone 71

::::::
cannot capture the complex epidemiological situation of bTB in an area. Therefore, estimating such a pa- 72

rameter in wildlife populations,
:::
that

:::
are

:
easily comparable from one year to another, would also be essential 73

to monitor
::
for

::::::::::
monitoring

:
the epidemiological situation and evaluate

::::::::
evaluating

:
the impact of the control 74

measures. 75

76

However, an ongoing issue in wildlife epidemiology is the difficulty to estimate
::
in

:::::::::
estimating prevalence in 77

wild populations, as the sampling of animals used for this estimation cannot be entirely controlled. Indeed, the 78

population is usually sampled using capture methods (e.g., traps for badgers), and the prevalence is usually 79

estimated from the sample of captured animals, under the assumption that these animals are a random 80

sample of the population (which therefore ignores the possible capture bias such as the uneven behavior of 81

the animals towards
::::::
toward the traps and the logistical constraints that can affect the placement of traps). 82

Moreover, in the case of participatory monitoring programmes
::::::::
programs, the participating local communities 83

generally already have their own objectives (e.g.
:
, wanting to trap more animals close to some given farms 84

during certain years, and close to others during other years) in addition to the Sylvatub objectives. Thus, the 85

monitoring protocols cannot be too rigid in participatory programmes implying volunteers
::::::::
programs

::::::::
involving 86

:::::::::
volunteers (e.g., Pocock et al., 2015). However, the spatial structure of the infection must be accounted for in 87

the estimation of
:::::::::
considered

:::::
when

:::::::::
estimating

:
the prevalence or any related indicator in a given population. 88

89

In addition, another estimation problem occurs when the sampled species is characterized by a social struc- 90

ture that makes trapped animals non-independent
::::::::::::::
nonindependent

:
from each other. For example, badgers 91

typically live in social groups sharing
:::
that

::::::
share the same sett and mutually defend a group territory (Roper, 92

2010). As a consequence, a correlation of the infection status is expected among animals trapped at a given 93

place (e.g., Delahay et al., 2000): when one trapped animal is infected, it is likely that other animals trapped at 94

the same place belong to the same group, and therefore are
::
are

:::::::::
therefore also infected. Moreover, it has been 95

shown that bTB infection
:::::::::
infections in badgers and cattle are spatially associated (Bouchez-Zacria, Courcoul, 96

et al., 2018; Bouchez-Zacria, Payne, et al., 2023)and
:
; therefore badgers trapped in the vicinity of

::::
near an 97

infected farm are more likely to be infected. Not accounting for this correlation when estimating the prevalence 98

may lead to an overestimated
:::::::::::::
overestimation

::
of

:
precision (Hisakado et al., 2006). 99

100

A last
::::
final difficulty occurs when the sensitivity and specificity of the tests used for the diagnostic

::::::::
diagnosis 101

are not perfect: not all infected (resp. non-infectedanimals) )
:::::::
animals are identified as such by these tests; there 102

may be false-positives and false-negatives
::::
false

::::::::
positives

:::
and

:::::
false

::::::::
negatives. Ignoring this imperfect measure 103

of the infection status can lead to the biased estimation of the prevalence (Dohoo et al., 2003). Moreover, if 104

the tests used for this diagnostic
::::::::
diagnosis

:
(and the corresponding sensitivity/specificity) change with time, the 105

assessment of the infection progression based on the uncorrected prevalence estimation may also be biased. 106

107

In this study, we focus
:::::::
focused on the targeted surveillance of badgers, which is

:::
was carried out in communes 108

characterized by surveillance level
:::::
levels 2 and 3 (representing 80% of the data collected in the framework of 109

Sylvatub between 2013 and 2019): in each identified bTB cluster, traps are
::::
were set up by members of Sylvatub 110

in the communes of the at-risk areas, and a M. bovis infection is searched on
:::
was

::::::
sought

::
in
:
a subsample of the 111

trapped badgers (the proportion and spatial distribution of tested animals depends
:::::::
depend on the number of 112

trapped animals, trap location and annual sampling objectives). We use
::::
used

:
these trapping data to develop a 113

complex Bayesian model and provide insight into how the proportion of infected badgers vary
:::::
varied

:
in space 114

and time in the three French bTB clusters, accounting for the complex spatial structure of the infection, the 115

correlation between
::
the

:
infection status of animals trapped at the same place and the limited sensitivity of 116

the diagnostic tests. Then, we use
::::
used this model as a basis to develop

:::
for

::::::::::
developing simpler indicators 117

of the prevalence that also account for all the aforementioned difficulties. These simpler indicators can be 118
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easily understood by all the stakeholders and used to monitor both the mean prevalence level and the mean 119

prevalence trend over a given period. Our
:::
The work in this paper is summarized on

::
in Fig 1. 120

Material and methods 121

Sylvatub programme
:::::::::
program

:
and database 122

The national surveillance system is described in details
:::::
detail in Réveillaud et al. (2018). Brieflyhere, in 123

the communes from level 2 and 3 departments (i.e., communes from infected areas), trapping and culling 124

badgers is implemented as a control measure aiming at reducing badgers
::
to

::::::
reduce

::::::
badger

:
abundance. To 125

do so, licensed field stakeholders (hunters, trappers, pest control officers) trap badgers, mostly between March 126

and August. Trapped
:::
The

:::::::::
regulatory

:::::::::
guidelines

:::
for

::::::
badger

::::::::
trapping

:::
are

:::::::
uniform

::::::
across

:::
the

:::::
three

:::::::
clusters,

::::
and 127

:::
are

:::::::
defined

::
by

:::
the

::::::
French

::::::::
Ministry

::
of

:::::::
Ecology

:::
and

::::::::::
Sustainable

:::::::::::::
Development,

:::::::
through

:::
the

:::::::::
ministerial

:::::
order

:::
of 128

::::::
January

:::::
29th,

:::::
2007.

::::
Only

::::
two

:::::
types

::
of

:::::
traps

:::
are

:::::::::
authorized

::
in

:::::::
France:

::::
stop

:::::
snare

::::
(i.e.,

:::::
snare

::::
with

:
a
:::::::::::
mechanism 129

:::
that

::::::
stops

:::
the

::::::
noose

:::::
from

::::::
closing

::::
too

::::::
tightly)

::::
and

:::::
cage

:::::
traps.

::::::
Night

::::::::
shooting

::
is

::::
also

:::
an

::::::
option

::
in

:::::
level

::
3 130

::::::::::
communes.

::::::::::::
Nevertheless,

::::
with

::
a
:::
few

:::::::::::
exceptions,

::::::
French

::::::::
trappers

:::::::::::::
predominantly

:::::
utilize

::::
stop

:::::::
snares.

::::::
Given 131

:::
the

:::::::::::
participatory

::::::
nature

::
of

:::
the

:::::::
Sylvatub

:::::::::
program,

::::
local

:::::::
trappers

::::::
retain

:::
the

:::::::::
autonomy

::
to

::::::
decide

::
on

::::
the

:::::::
number 132

::
of

:::::
traps,

::::
trap

::::::
nights,

:::
and

:::::
their

:::::::::
placement.

:::::::::
However,

:::
the

:::::::
Sylvatub

::::::::
program

::::::::::
encourages

::::::::
however

:::::::
trapping

:::::
near 133

:::::::
infected

:::::
farms

:::::::::
(technical

:::::::
directive

:::::
from

:::
the

::::::
French

:::::::
Ministry

:::
of

:::::::::
Agriculture

:::::::::::::::::::::
DGAL/SDSPA/2018-708). 134

135

:::
The

::::::::
trapped badgers are culled, and sent to the local veterinary laboratory for necropsy and M. bovis testing 136

in
::::::::
following the framework of Sylvatub. Not all dead animals are tested: national prescription is ;

:::
the

::::::::
national 137

:::::::::
guidelines

:::
are to analyze at most 2

:::
two

:
animals in each commune and each year, which we suppose in the 138

following to be .
::::
The

::::::
choice

::
of

::::::::
analyzed

:::::::
animals

::::::
among

::::::::
trapped

:::::::
badgers

::::
was

:::
left

::
to

:::
the

:::::
local

:::::::
partners

::
of

::::
the 139

:::::::
network.

::::::
Given

::::
that

:::
the

::::::::
infection

:::::
status

::
of

:::::::
trapped

::::::::
badgers

:
is
:::::::
seldom

:::::::::
discernible

:::::
from

:::::::
external

::::::::::::
observations 140

::
(as

:::::
most

:::
TB

::::::
lesions

:::::::::
diagnosed

::
in
::::::::
badgers

:::
are

:::::::
internal,

:::
as

:::::
noted

:::
by

::::::::::::::::::::
Réveillaud et al. (2018)),

:::
we

:::
are

:::::::::
confident 141

:::
that

::::::
there

:::
was

:::
no

:::::::::
sampling

::::
bias

:::::::
directly

::::::
related

:::
to

:::
the

::::::::
infection

::::::
status

::
of

::::::::
animals.

::::::
While

:::::::
trapping

:::::::
efforts 142

::::
were

::::::::::
intensified

::::
near

:::::::
infected

::::::
farms

::
to

:::::::
control

:::
the

:::::::
density

::
of

:::::::
badgers

::
in

:::::::::
proximity

::
to

:::::
these

::::::
areas,

::::::::
Sylvatub 143

:::::::::
guidelines

::::::::::
encouraged

:::
the

::::::::
analysis

::
of

:::::::
badgers

::::::::::
distributed

:::::::
spatially

:::
as

::::::::
uniformly

:::
as

::::::::
possible.

::
In

::::::::
practice,

:::
we 144

::::::::
observed

::::
that

:::
the

:::::::
badgers

::
of

::
a

:::::::::
commune

::::
sent

:::
for

:::::::
analysis

::::
were

:::::
often

::::
the

:::
first

::::
two

:::::::
trapped

::::::::
badgers. 145

146

::
In

:::
the

:::::::::
following,

:::
we

:::::::
assume

:::::
that

:::
the

:::::::
animals

::::
sent

:::
to

:::
the

::::::::::
laboratory

:::
are

:
a random sample of the sent 147

animals . The result
:::::::
trapped

:::::::
animals.

:::::
This

::::::::
guideline

::
to

::::
test

::
at
:::::
most

::::
two

:::::::
animals

::::
was

::::::::
intended

:::::
more

:::
as

::
a 148

::::::
general

:::::::::::::::
recommendation

::::::
rather

::::
than

:
a
:::::
strict

::::::::
fieldwork

:::::::::::
requirement.

::::::::
Although

:::::::::::
fieldworkers

::::::::
generally

::::::::
adhered 149

::
to

:::::
these

:::::::::
guidelines

:::::
during

::::
the

:::::
study

::::::
period,

::::::::::::
approximately

::::
25%

::
of

::::
the

:::::::::
communes

:::::::
trapped

::::
and

::::::::
analyzed

:::::
more 150

::::
than

:::
two

:::::::
animals

::::
per

::::
year

::
on

::::::::
average.

::
In

:::
all

:::::
three

:::::::
clusters,

::::::::
between

::::
12%

:::
and

::::
13%

::
of

::::
the

:::::::::
communes

::::::::
trapped 151

:::
and

::::::::
analyzed

:::::
more

::::
than

:::
21

:::::::
badgers

::::
over

:::
the

::::::
7-year

::::::
period,

::::
and

:::::::
between

::
3
::::
and

::
4%

:::
of

:::
the

:::::::::
communes

::::::::
trapped 152

:::::
more

::::
than

::
36

::::::::
badgers

::::::
during

:::
this

:::::::
period.

:::::
Note

::::
that

:::
our

::::::::
statistical

:::::::::
approach

::::::::
assumed

:::
the

::::::::::
ignorability

::
of

::::
the 153

::::::::
sampling;

::
in
::::::
other

::::::
words,

:::
we

::::::::
assumed

:::::
that

:::::::
infected

::::
and

:::::::::::
noninfected

:::::::
badgers

::::
are

::::::::::::
characterized

::
by

::::::
equal 154

:::::::::::
trappabilities.

:::::
The

::::::
results

:
of the test for each analyzed animal is

:::
are

:
stored in a local database and then 155

:::::::::::
subsequently

:
compiled in the national Sylvatub database.Trappers are encouraged to place their traps in the 156

vicinity of bovine farms and to cover the entire infected areas. 157

158

As Sylvatub was launched in 2011 and was not yet well-established before 2013, our study period therefore 159

covers
:::::::
covered 2013 to 2019. The set of communes where targeted surveillance was authorized

::
for at least 160

one year between 2013 and 2019 defines
::::
was

::::
used

::
to

::::::
define

:
three main spatially connected sets, which are 161

hereafter called M. bovis clusters (Fig 2D). The Dordogne/Charentes cluster covers 7698 km2 and is composed 162

of 413 communes; the Burgundy cluster covers 4254 km2 and is composed of 254 communes;
:::
and the Bearn 163
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Figure 1. Summary of the models fitted in this paper. For each cluster (here illustrated
::::::
herein with the

Dordogne/Charentes cluster), our dataset consists in
::::::::
consisted

::
of

:
a sample of badgers trapped in different

communes during different years,
:::
and

:
tested for M. bovis. We first fit a complex Bayesian model to this

dataset accounting for many characteristics of the infection (leftpart). We then focus
:::::::
focused on highly

infected communes and use
::::
used the average predictive comparison

:::::::::::
comparisons to estimate the mean

proportion of the cluster population becoming infected in one year.
:::::::::::
Additionally, and we use

::::
used the model

to estimate the mean prevalence in
:
of

:
these infected communes during the year in the middle of the

:::::
study

period. We then fit a much simpler linear regression (rightpart) on the data collected in
::::
from the highly

infected communes, which allow
:::::::
allowed

::
us

:
to directly produce estimates of

:::::::
estimate the mean proportion of

the cluster population becoming infected in one year, and of the mean prevalence in the cluster population

during the year in the middle of the study period. Simulations
:::
The

::::::::::
simulations

:
indicate that the two

approaches return
:::::::
returned

:
nearly identical results.
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cluster covers 3222 km2 and is composed of 196 communes. The median surface
:::
area

:
of a commune is 12 km2

164

(interquartile range: 7.2 km2 to 18.3 km2).
:::::
Note

:::
that

:::
we

::::
lack

:::::::
precise

::::::::::
information

:::::::::
regarding

:::
the

:::::
social

::::::
group 165

:::
size

::
of

:::::::
badgers

::
in

:::
the

:::::
three

::::::::
clusters.

:::::::::::::::::
Jacquier et al. (2021)

:::::::::
employed

:
a
::::::::
standard

::::::::::::
methodology,

:::::::
utilizing

:::::::
camera 166

::::
traps

::::
and

::::::
genetic

::::::::::::
identification,

::
to

::::::::
estimate

::::::
badger

:::::::
density

::::::
across

:::::::
multiple

::::
sites

::
in

:::::::
France,

::::::::
including

:::
the

:::::
three 167

:::::::
clusters

::
of

:::::::
interest.

::::::
These

:::::::
authors

:::::::
showed

::::
that

:::
the

:::::::
badger

::::::
density

::::
was

:::::::
highest

::
in

:::
the

:::::::::::::::::::
Dordogne/Charentes 168

::::::
cluster

::::
(6.18

::::::::
badgers

:
/
:::::
km2),

::::::::
followed

:::
by

:::
the

::::::
Bearn

::::::
cluster

:::::
(5.39

:::::::
badgers

:
/
:::::
km2),

::::
and

::::
the

::::::::
Burgundy

:::::::
cluster 169

::::
(two

::::
sites

:::::
were

::::::
studied

:::
by

:::::
these

:::::::
authors

::
in

::::
this

::::::
cluster

:::
and

:::::
were

::::::::::::
characterized

::
by

::
a
:::::::
density

::
of

::::
4.08

::::
and

::::
4.22 170

:::::::
badgers

:
/
:::::
km2).

::::
For

:::::::::::
comparison,

:::
the

:::::
mean

:::::::
density

::::::
across

:::
the

:::
13

::::
sites

:::::::
studied

::
by

:::::
these

::::::::
authors,

::::::::::
distributed 171

:::::
across

::::
the

:::::
entire

:::::::::::
metropolitan

::::::
region

::
of

:::::::
France

:::
was

::::
5.85

::::::::
badgers

:
/
::::
km2

:
–
:::
SD

:
=
::::
3.25

::::::::
badgers

:
/
:::::
km2). 172

173

Following the necropsy, two types of first-line tests were carried out on animal samples, depending
:::
the 174

::::::
animal

::::::::
samples.

:::::
Pools

::
of

::::::
lymph

::::::
nodes

:::::::::::::::
(retropharyngeal,

:::::::::
pulmonary

::::
and

::::::::::
mesenteric)

::::
and

::::::
organs

:::::
with

:::::
gross 175

::::::
lesions

:::::
were

::::
used

::
in

::::
the

:::::::
analysis.

::::
The

::::
type

:::
of

:::::::
analysis

:::::::::
depended

:
on the period: (i) from 2013 to 2015, the 176

first-line test was the bacterial culture performed on
::
the

:
sampled tissues of all tested animals, following the 177

protocol established by the French NRL (NFU 47-104) for
::
the

:
isolation of M. bovis; (ii) since 2016, the first-line 178

test was
:::
has

:::::
been real-line PCR performed after DNA extraction from a pool of lymph nodes (retropharyngeal, 179

pulmonary and mesenteric) and from organs with gross lesions; molecular
:::
the

::::::::
sampled

::::::
tissues.

::::::::::
Molecular 180

typing (spoligotyping) was performed either on MTBC
:::::::::::::
Mycobacterium

:::::::::::
tuberculosis

:::::::
complex

:::::::
(MTBC) isolates or 181

directly on PCR-positive sample DNA (see Réveillaud et al., 2018, for technical details on these two procedures). 182

The sensitivity
::::::::::
sensitivities

:
of the two techniques differs

::::
differ: the sensitivity of the microbiological cultures 183

is estimated at
::
to

:::
be 50%, whereas the sensitivity of the PCRs is estimated at

:::
PCR

::
is
:::::::::
estimated

:::
to

::
be

:
75% 184

(Réveillaud et al., 2018; Riviere et al., 2015). The specificity is supposed to
:::::
should

:
be equal to 100% for these 185

two tests (i.e., no false positives). 186

187

During the study period, 4590 badgers were trapped and sent to the lab
:::::::::
laboratory in Dordogne/Charentes, 188

among which 4379 badgers were actually tested. Interpretable results were obtained for 4323 of them (i.e.in
:
, 189

::
on

:
average 1.5 badgers per commune and per year; interquartile range: 0 animals to 2 animals tested per 190

commune and per year). In Burgundy, 3042 badgers were trapped and sent to the lab, among which
:::::::::
laboratory, 191

::::::
among

::::::
whom 2900 were actually tested, and ;

:
interpretable results were obtained for 2786 of them (in

:::
on 192

average 1.56 animals
::::
were

:
tested per commune and per year; interquartile range: 0 to 2 animals

::::
were tested 193

per commune and per year). Finally, in Bearn, 2223 badgers were trapped and sent, among which 1999 were 194

tested, and ;
:
interpretable results were obtained for 1970 of them (in

:::
(on average 1.43 animals

::::
were tested 195

per commune and per year; interquartile range: 0 to 2 animals
::::
were

:
tested per commune and per year). 196

197

For each trapped animal, the following data were stored: date of trapping, name of the commune where 198

the animal has been
::::
was trapped, results of the test (M. bovis positive, M. bovis negative), type of first-line test 199

carried out (bacterial culture; PCR), date of the analyses, surveillance level of the commune of trapping, and 200

sex and age class (young; adult) of the animals (though
:::::::
although

:
this latter information is not systematically 201

reported by the field partners). 202

203

A Bayesian model of the infection 204

Model fit 205

For each of the three M. bovis clusters, we fitted a Bayesian model describing the dynamics of the infection 206

process. Consider one particular cluster. Let Nit be the known number of badgers trapped and tested in 207

the commune i during year t. Let yit be the unknown number of badgers actually infected among thoseNit 208

animals. Let zit be the known number of animals for which the test indicated a M. bovis infection among those 209
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yit infected animals. We fitted the following hierarchical Bayesian model: 210

zit ∼ Binomial(yit, st) (1)

yit ∼ Beta-Binomial(Nit, pit, ρ) (2)

log
pit

1− pit
= α+ β × t+ ui (3)

ui|u−i ∼ N (
1

di

∑
j∼i

uj ,
1

di

1

τ
) (4)

The equation
::::::::
Equation (1) accounts for the known sensitivity st of the tests used during the year t (i.e., st = 0.5 211

for microbiological culture, and st = 0.75 for PCR): the number zit of animals for which a
::
an M. bovis infection 212

was diagnosed is a random subset of the unknown number yit of animals actually infected (which is a latent 213

variable in this model). Each infected animal is detected as such with a known probability st. 214

215

We supposed
:::::::
assumed

:
a beta-binomial distribution for the unknown number of infected animals yit 216

(equation
:::::::
Equation

:
(2)). This distribution accounts for a possible correlation between the infection status 217

of two animals trapped
:::
the

:::::::
animals

:::::::
trapped

::
in

:
the same year in the same commune, and is parameterized 218

by the known numberNit of badgers trapped in commune i during year t, the unknown prevalence pit of M. 219

bovis infection in commune i and year t, and the unknown correlation coefficient ρ (estimated by the model 220

fit) between the infection status of two
::
the

:
animals trapped in the same commune. The parameterization 221

of the beta-binomial distribution as a function of a probability (here, the prevalence) and a correlation co- 222

efficient was proposed by Hisakado et al. (2006) as a means to account for the correlation between binary 223

variables in binomial counts. Appendix A give
::::
gives

:
the formal expression of this distribution with this param- 224

eterization, and
::::::::
discusses how it relates to the parameterization classically used by statistical software such as R. 225

226

The prevalence pit is itself modeled by a logistic regression depending on a commune effect and a linear 227

year effect (also estimated by the model fit; equation
:::::::
Equation

:
(3)). The effects ui of the communes on the 228

prevalence are not independent from
:
of

:
each other. Indeed, because of the strong spatial structure of the 229

infection in the clusters, there is a high probability that the prevalence
::
of

::::::::
infection is high in a commune if it is 230

high in neighbouring
::::::::::
neighboring communes. We account for this spatial autocorrelation of the commune ef- 231

fects by modelling
:::::::
modeling

:
these random effects ui with an intrinsic Conditional AutoRegressive

::::::::::
conditional 232

::::::::::::
autoregressive

:
(iCAR) model (Equation (4), see also Rue and Held, 2005). Thus, the random effect ui of the 233

commune i is supposed
:::::::
assumed

:
to be drawn from a Gaussian distribution with

:
a
:
mean equal to the mean 234

of the random effects of neighbouring
::::::::::
neighboring

:
communes. In equation

:::::::
Equation

:
(4), i ∼ j means that 235

commune i shares a boundary with commune j; ,
:
u−i is the vector of commune random effects excluding 236

the effect ui, and di is the number of communes sharing a boundary with commune i. The parameter τ is 237

estimated by the model fit, describing
:::::
which

:::::::::
describes the precision (inverse of the variance) of the random 238

effects ui. 239

240

We defined weakly informative priors for the parameters of the model. We fitted this model by MCMC, 241

::::::
Markov

:::::
chain

::::::
Monte

:::::
Carlo

:::::::
(MCMC)

:
using 4 chains of 1 million iterations each , after a burn-in period of 3000 242

iterations. To save some memory space, we thinned the chains by selecting one sample every 1000 iterations. 243

We checked the mixing properties of the chains both visually and using the diagnostic
:::::::
method of Gelman and 244

Rubin (1992). We checked the goodness of fit of our model , using the approach recommended by Gelman and 245

Meng (1996): each MCMC iteration r generated a sampled value θr of the vector of parameters of interest 246

θ = (τ, α, β, ρ,u)t. For each simulated value θr , we simulated a replication of the Sylvatub dataset (i.e., we 247

simulated a random infection status for each trapped animal of the dataset with the fittedmodel parameterized 248

by the vector simulated by the r-th MCMC iteration). We then compared summary statistics calculated on the 249

observed Sylvatub dataset with the distribution of the same statistics derived from the simulated datasets. All 250

these checks indicated a satisfactory fit of the model (see appendix
::::::::
Appendix D for details on these checks 251
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and on model fit). 252

253

Estimation of the prevalence level and trend from the model 254

First, we used the fitted model to estimate the trend over time of the prevalence in each cluster. On a 255

logit scale, the average change with time of the prevalence
::
in

:::
the

::::::::::
prevalence

::::
with

::::
time

:
is reflected by the 256

coefficient β in equation
::::::::
Equation (3). It is well known that in a logistic regression, the exponential of a co- 257

efficient (here β) is equal to the odds-ratio
::::
odds

:::::
ratio of the corresponding variable (here the time t), i.e.

:
, 258

{pt/(1 − pt)}/{pt−1/(1 − pt−1)}, which in our model measures the amount by which the odds p/(1 − p) 259

of the infection is
::
are

:
multiplied in one year (Hosmer and Lemeshow, 2000, p. 50). However, odds-ratios 260

are difficult to understand by stakeholders
::::
odds

:::::
ratios

:::
are

:::::::
difficult

:::
for

:::::::::::
stakeholders

::
to

:::::::::::
understand, which can 261

be problematic in a participatory programme
:::::::
program

:
context. As noted by King and Zeng (2002), “we have 262

found no author who claims to be more comfortable communicating with the general public using an odds ratio. 263

Similarly, Gelman and Hill (2006, p. 83) reported
::::
that “we find that the concept of odds can be somewhat difficult 264

to understand, and odds ratios are even more obscure. Therefore, we prefer to interpret coefficients on the original 265

scale of the data”. In this section, we follow this last recommendation, by calculating the average rate of change 266

of
::
in the prevalence in a cluster using the fitted model. 267

268

Due to both the nonlinearity of the logit transform used in the model and the strong spatialization of the

infection, the estimation
:::::::::
estimating from the model of the average proportion of animals becoming infected

in one year can be tricky
::::::
difficult. Gelman and Pardoe (2007) proposed an approach to estimate this rate of

change, based on the concept of predictive comparison. For a given commune v and a given value of the

vector of parameters θ of the model, the predictive comparison measures the expected rate of change of
::
in

the prevalence p when the year changes from t(1) to t(2):

δt(t
(1) → t(2), v, θ) =

E(p|t(2), v, θ)− E(p|t(1), v, θ)
t(2) − t(1)

This quantity, easily calculated with our model, varies as a function of these inputs (the years compared, 269

the commune, and the value of the vector of parameters). To summarize the overall effect of the year on 270

the prevalence in a given dataset, Gelman and Pardoe (2007) proposed to calculate
:::::::::
calculating the mean 271

value∆t of the predicted comparisons over the probability distribution of the inputs (years and communes) 272

estimated with the data, and over the posterior distribution of the parameters. This averaging is equivalent 273

to consider
::::::::::
considering all pairs of animals (i, j) in the data, corresponding to pairs of transition

:::::::::
transitions 274

of (ti, vi) to (tj , vj ) in which the commune vi = vj is held constant. Technical details on the calculation of 275

the Average Predictive Comparison
:::::::
average

:::::::::
predictive

::::::::::
comparison

:
(APC) are given in appendix

::::::::
Appendix B. 276

When positive, the APC estimated the proportion of the population animals becoming infected in
:::::::
animals

::::
that 277

:::::::
became

:::::::
infected

::::::
within one year in each cluster. When negative, the APC estimated the proportion of the 278

population becoming sane in one year due to
:::::::::
Conversely,

::::::::
negative

::::::
values

::
of

:::
the

::::
APC

::::::::
indicated

:
a
:::::::::
decrease

::
in 279

:::
the

:::::::::
prevalence

::::::
within

::::
one

::::
year.

:::::
This

::::::::
reduction

::::::
results

:::::
from

:
a
::::::::::::
combination

::
of

::::::
factors,

:::::::::
including the death of 280

infected animals, the birth of uninfected animals, and a decrease of
:
or

::
a
::::::::
decrease

::
in the infection rate, which 281

collectively lead to a decreasing prevalence in the population. 282

283

The APC gives
::::::::
provides an index of the dynamics of the infection in a cluster. We also estimated another 284

statistic summarizing the mean prevalence level in a cluster during the study period. Because the prevalence 285

varies in space and time
:::::
varied

:::::::
spatially

::::
and

::::::::::
temporally, we used the equation

:::::::
Equation

:
(3) to estimate the 286

expected prevalence in each commune during the middle year of our study period (i.e.,
:
for the year t =2016), 287

and we averaged it over the communes of the cluster. This gave an idea of the importance of the infection in 288

each cluster during the studied
:::::
study

:
period. 289

290
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The calculation of both the APC and the mean prevalence level during the middle year was restricted to the 291

set of highly infected communes (i.e.
:
, communes for which ui > 0 in equation

:::::::
Equation

:
(4)) , to allow the

::
to 292

::::
allow

:
comparison with the simpler indicators developed in the next section. 293

294

Development of simple indicators ofM. bovis prevalence level and trend 295

Although the model developed in the previous sections is useful to understand
::
for

:::::::::::::
understanding

:
the 296

spatialization and dynamics of the infection process, it is too complex to be used on a regular basis by the 297

stakeholders of Sylvatub to assess how the level of prevalence
::::::::::
prevalence

::::
level changes with time. Instead, we 298

propose in this section,
:::
we

::::::::
propose two new indicators that can be estimated with the trapping data collected 299

by the network. These indicators estimate in a simpler way the same quantities that were introduced in the 300

last subsection, i.e., the mean prevalence level in the middle year of the study period and the mean proportion 301

of animals becoming infected in one year. 302

303

Consider a given M. bovis cluster during a given study period with
:
of

:::::::
several years t = 1, 2, ..., T , during 304

which n animals have been collected by
:::::
were

::::::::
collected

:::
via the Sylvatub network. For each animal i, let Bi 305

be the infection status returned by the test (coded as 0/1) and si be the sensitivity of the test used for this 306

diagnostic
:::::::
diagnosis. We can derive two useful indicators with the classical simple linear regression fitted to 307

the set of animals trapped during the study period: 308

Bi/si = a+ b× t̃i + εi (5)

where t̃i is the centred year (i.e. ti − t̄, where t̄ is the middle year of the study period), and εi is a residual. 309

It can be easily demonstrated that, in
:
In

:
this model, the coefficient a corresponds to the average prevalence 310

observed in the middle year of the study period, and the coefficient b corresponds to the proportion of the 311

badger population that becomes infected during a year in
::
on

:
average during the study period (i.e., the same 312

quantity as the APC calculated for the Bayesianmodel, see appendix ;
::::
see

::::::::
Appendix C for a detailed explanation 313

of the rationale). 314

315

This approach accounts for the imperfect sensitivity of the tests used for the M. bovis diagnostic
::::::::
diagnosis, 316

but does not account for the spatial structure of the infection in the cluster under study. We will show (see 317

results
:::
the

::::::
Results

:
section) that there is a very strong spatial structure of the infection in the three M. bovis 318

clusters. Therefore, not accounting for this structure can lead to biased estimates if the trapping pressure in 319

highly infected areas varies between years. We therefore suggest to calculate this
:::::::::
calculating

:::::
these

:
prevalence 320

indicators by focusing only on highly infected communes (i.e. communes characterized by an estimated 321

random effect ui greater than 0 in equation
::::::::
Equation (4)), so that the remaining unaccounted spatial variability 322

of infection can be ignored. This approach also ignores the correlation possibly caused by the social structure 323

of the badger population and by other local factors (e.g. proximity to an infected farm), but we will
:
;
::::::::
however, 324

::
we

:
show that this correlation is negligible in the three clusters (see results

::::::
Results). 325

326

Assessing the indicators with the Bayesian model 327

The complex Bayesian model described by equations (1) to (4) and the simpler regression model described 328

by equation
::::::::
Equation (5) are two models of the same process, though the latter is much simpler. Both can be 329

used to estimate themean prevalence level during themiddle year of the study period and themean proportion 330

of the population becoming infected in one year in a cluster. The simple regression model imperfectly accounts 331

for the spatial structure of the infection and ignores the correlation caused by local factors (e.g. social structure, 332

proximity to infected farms), but it ;
:::::::::
however,

:::
this

:::::::::
approach is much easier

:::
for

:::::::::::
stakeholders to understand 333
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and to implementby stakeholders
:::::::::
implement. This latter model is therefore proposed to

:::
for stakeholders as a 334

means to monitor the infection in a cluster. 335

336

We carried out two
:::::
three sets of simulations to assess the ability of the simpler regression model to estimate 337

the two target quantities. For these two sets of simulations, we simulated different infection situations, using 338

:::
The

::::
first

:::
set

::::
was

::::::::
designed

:::
to

::::::
assess

:::
the

::::::
ability

::
of

:::
our

::::::::::
regression

::::::
model

::
to

::::::::
estimate

:::
the

::::::
trend

::::
over

::::
time

:::
of 339

:::
the

::::::::::
prevalence

::
in

::::::
various

:::::::::
situations

::::
that

::::::
might

::
be

::::::::::::
encountered

::
in

::::::
reality

::::
(that

::
is,

::::::
either

:::
an

::::::
initially

::::
rare

::::
but 340

:::::::::
increasing

:::::::
infection

:::
or

::
an

:::::::
already

::::::::::
widespread

::::::::
infection

::::
with

::::::::
different

:::::::
trends).

::::
The

:::::::
second

:::
set

:::
was

:::::::::
designed 341

::
to

::::::
assess

:::
the

:::::
ability

::
of

:::
our

::::::::::
regression

:::::
model

:::
to

:::::::
estimate

:::
the

:::::
mean

::::::::::
prevalence

::::
level

::
of

:::
the

::::::::
infection

::
at

::
a

::::::
variety 342

::
of

:::::
actual

:::::
levels

::::::
(from

::::
rare

::
to

::::
very

::::::::
frequent

:::::::::
infection).

::::
The

:::
last

:::
set

::::
was

::::::::
designed

::
to

::::::
assess

:::
the

::::::::::
robustness

:::
of 343

:::
our

::::::::
approach

:::
to

::::::::
violations

::
of

::::
the

::::::::::
hypotheses

::
on

::::::
which

:
it
:::::
relies

:::::::
(strong

::::::
spatial

::::::::::::
heterogeneity

:::::::::
remaining

:::::
even 344

::
in

:::::
highly

:::::::
infected

:::::::::::
communes,

::::::
spatial

::::::::
structure

::
of

:::
the

::::::::
infection

::::::::
changing

::::
with

:::::
time,

::::::::::
nonrandom

:::::::::
sampling). 345

346

:::
For

::
all

:::::
these

:::::::::::
simulations,

:::
we

:::::
used the Dordogne/Charentes cluster as an example. We

::
In

::
all

:::
the

::::::
cases,

:::
we 347

simulated datasets covering 7 years in this cluster. We generated a number
::::::
sample of trapped animals for each 348

year and each commune
:::
for

::::
each

:::::::::
commune

:
i
:
of the cluster from a binomial negative distribution with mean 349

µ
::
µi and dispersion parameter θ = 0.48 (value

:::
this

:::::
value

::::
was

:
estimated from our dataset by maximum likeli- 350

hood). In each set
:
;
::
in

:::
the

::::
first

::::
and

::::::
second

::::
sets of simulations, we simulated four possible values of µ

::::::
µi = µ, 351

corresponding to four levels of trapping pressure
:
,
::::
were

:::::::::
simulated: µ = 0.5 animals trapped per commune 352

and per year in average,
::
on

:::::::
average,

::::
and

:
µ = 1, µ = 3 and µ = 10 (as a point of comparison, remember that 353

in our dataset, µ ≈ 1.5 in all clusters).
::
In

:::
the

:::::
third

:::
set

::
of

::::::::::
simulations,

:::
µi :::::

varied
:::::::
among

::::::::::
communes

:::
(see

:::::::
below). 354

For each simulated animal, we simulated a
:::
the probability of infection with the help of equation

::::::::
Equation (3). 355

Different values of the slope β and intercept α were specified for the different simulated
:::::::::
simulation

:
situations 356

(see below). We simulated an iCAR process to generate random commune effects ui using equation ::::::::
Equation 357

(4), setting
:
.
:::
We

::::
set τ = 0.73

:::
for

:::
this

::::::::
process

::
in

:::
the

::::
first

::::
and

::::::
second

::::
sets

::
of

:::::::::::
simulations (corresponding to 358

the mean value estimated by the model with the Sylvatub dataset in the Dordogne/Charentes Cluster, see 359

results
:::::::
Results).

:::
We

:::::
used

:::::::
another

:::::
value

::
of

:
τ
:::
for

::::
the

::::
third

:::
set

::
of

::::::::::
simulations

::::
(see

::::::
below). For each animal, we 360

could calculate
::::::::
calculated

:
the probability of infection pit from the vector of (α, β, {ui})with equation::::::::

Equation 361

(3). We then simulated a
:::
the

:
random infection status for

:
of

:
each animal using equation

:::::::
Equation

:
(2), fixing 362

the correlation coefficient ρ = 0.04 (also corresponding
:::::
which

:::
also

:::::::::::::
corresponded to the value estimated in 363

the Dordogne/Charentes cluster using the Sylvatub dataset, see results
::::::
Results). Finally, we used equation 364

:::::::
Equation

:
(1) to simulate an imperfect but variable sensitivity (sensitivity equal to 0.5 during the first three years 365

and 0.75 during the four last
:::
last

::::
four

:
years). 366

367

In the first set of simulations, we wanted to assess the ability of our regression model to estimate the trend 368

over time of the prevalence in two different situations with regard to its change with time: (i) low but increasing 369

prevalence
:
a
::::
rare

::::::::
infection

::::
that

::::::::
becomes

:::::
more

:::::::::::
widespread

::::
with

::::
time: we simulated a

::
an

:
M. bovis infection 370

rarely present on
::
in the study area during the first year (≈ 5% of the animals are

:::::
were infected in a typical 371

commune of the cluster)with a ,
::::
with

::::
the prevalence increasing with time. More precisely, we set the intercept 372

α = −3.1 in model
:::::
Model (3) and the slope β of the year was randomly drawn from a uniform distribution 373

bounded between 0 and 0.4; (ii) high prevalence, increasing or decreasing
:::
an

::::::
already

:::::::::::
widespread

::::::::
infection 374

::::
with

:::::::
different

::::::
trends: we simulated a frequent infection during the first year of the study period (≈ 20% of 375

the animals are
::::
were

:
infected in a typical commune) with a prevalence

::
an

:
either increasing or decreasing 376

:::::::::
prevalence. More precisely, we set the intercept α = −1.38 and the slope β randomly drawn from a uniform 377

distribution bounded between -0.4 and 0.4. For each combination of trapping pressure µ and simulated 378

situation (either low but increasing prevalence or high prevalence), we simulated 1000 datasets. For each 379

dataset, we estimated the true proportion ∆u of animals of the area becoming infected in
:
in

:::
the

:::::
area

::::
that 380

:::::::
became

:::::::
infected

::::::
within one year in the highly infected communes (i.e. those with simulated random effect 381
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::::::
effects greater than 0) with

::
via

:
the APC procedure. We applied the linear regression (5) to the data simulated 382

in these communes. We then compared the estimated slope b with the APC∆u of the simulated model, which 383

should in theory be equal if the two models are equivalent. 384

385

In the second set of simulations, we wanted to assess the ability of our regression model to estimate the 386

mean prevalence level during the middle year. We simulated
:::
the data with our Bayesian model, using different 387

values of the intercept α = −4,−3,−2,−1, 0, describing
:::::
which

::::::::
describes different mean prevalence levels. 388

We then randomly sampled a slope β from a uniform distribution bounded between -0.4 and 0.4. We simulated 389

1000 datasets for each combination of value of intercept α and of trapping pressure µ. For each simulated 390

dataset, we considered only the highly infected communes (i.e.,
:::::
those

:
with ui > 0) and we calculated the 391

true mean prevalence over the area during the middle year of the study period. We then applied the linear 392

regression (5) to the data simulated in these communes. We then compared the estimated slope a with this 393

true mean prevalence, which should be equal if the two models are equivalent. 394

395

::
In

:::
the

:::::
third

:::
set

::
of

:::::::::::
simulations,

:::
we

::::::
aimed

:::
to

::::::
assess

:::
the

::::::::::
robustness

::
of

::::
our

::::::
model

::
to

::::
the

:::::::
violation

:::
of

::::
two 396

:::::::::
underlying

::::::::::
hypotheses:

:::
(i)

:::::::::
ignorability

::
of

:::
the

:::::::::
remaining

::::::
spatial

::::::::
structure

::
of

:::
the

:::::::::
prevalence

:::::
when

:::
the

::::::::::
regression 397

:::::
model

::
is
:::::::
applied

::::
only

::
to

:::
the

:::::
data

::::::
coming

:::::
from

::::::
highly

:::::::
infected

::::::::::
communes

:::
and

:::
(ii)

::::::::
additivity

::
of

::::
the

:::::
space

::::
and 398

::::
time

::::::
effects

:::
on

:::
the

:::::::::::
prevalence.

:::
In

:::::
these

::::
two

:::::::::
situations,

:::
we

:::::::::
simulated

::::
the

::::
data

:::::
with

:::
our

:::::::::
Bayesian

::::::
model 399

:::::
using

:::
two

::::::::
different

::::::
values

:::
of

:::
the

::::::::
intercept

::::::::::
α = −2, 0,

:::::::::::
representing

::::::::
different

::::::
mean

::::::::::
prevalence

::::::
levels.

::::
We 400

::::
then

::::::::
randomly

::::::::
sampled

::
a

:::::
slope

:
β
::
in

::
a

:::::::
uniform

::::::::::
distribution

::::::::
bounded

::::::::
between

::::
-0.4

:::
and

::::
0.4.

:::
To

:::
test

:::
the

::::::
effect 401

::
of

:::
the

:::::::
violation

:::
of

:::
the

:::
first

::::::::::
hypothesis,

:::
we

:::::::::
simulated

:::::::
random

:::::::::
commune

::::::
effects

::
ui:::::

using
::::::::
Equation

:::
(4),

::::::
setting

::
a 402

::::
very

:::
low

:::::
value

:::::::
τ = 0.1,

:::::::::::::
corresponding

::
to

::::
very

::::::
strong

::::::
spatial

::::::::::::
heterogeneity.

:::
To

::::
test

:::
the

::::::
effects

::
of

:::::::
violating

::::
the 403

::::::
second

::::::::::
hypothesis

::::::::
(additivity

:::
of

:::::
space

::::
and

::::
time

:::::::
effects),

::::
we

::::::::
simulated

::::
the

::::::
spatial

::::::::
structure

::
of

::::
the

::::::::
infection 404

::::::::
changing

::::
with

::::
time.

:::::
More

:::::::::
precisely,

::
we

:::::::::
simulated

::::
two

:::
sets

::
of

:::::::::
commune

:::::::
effects,

:::::
{u(1)

i }
::::
and

:::::::
{u(T )

i },
:::::::::
describing 405

:::
the

::::::
spatial

::::::::
structure

::
at

:::
the

:::::
start

:::
and

::::
end

::
of

:::
the

:::::
study

:::::::
period,

::::::::::
respectively

::::::
(using

:::::::
τ = 0.73

::
in
:::::
both

::::::
cases).

::::
The 406

:::
set

::
of

:::::::
random

::::::
effects

:::::
used

::
at

::::
time

:
t
::::
was

:::::::::
calculated

::
by

:::::::::::::::::::::::::::::::::::::::::::
ũ
(t)
i = ((t− 1)/6)× u

(1)
i + (1− (t− 1)/6)× u

(T )
i .

:::
In 407

:::
the

:::
two

::::::
tested

:::::::::
situations,

:::
we

:::::::::
estimated

:::
the

::::
two

::::::::::
parameters

::
of

:::::::
interest

::::::::
(intercept

::::
and

:::::
slope

::
of

:::
the

::::::::::
regression 408

::::::
model)

::::
and

:::::::::
compared

:::::
them

::
to

::::
the

:::::::::
theoretical

::::::
values

:::::
used

:::
for

::::::::::
simulation.

:::
In

::::
this

:::::
third

:::
set

::
of

:::::::::::
simulations, 409

:::
two

::::::::
sampling

:::::::::
schemes

::::
were

::::::::::
compared

::
to

::::::::::::
demonstrate

::::
how

::::::::
directed

::::::::
sampling

::::
can

::::::::::
exacerbate

:::
the

::::::
effect 410

::
of

:::
the

::::::::
violation

::
of

::::::::::
underlying

:::::::::::
hypotheses:

:::::::
random

::::::::
sampling

:::::
with

::::::
µi = 2

::::
and

:::::::
directed

::::::::
sampling

::::::
where

::::
the 411

:::::
mean

:::::::
number

:::
of

:::::::
animals

::
in

::
a
:::::::::
commune

::::
was

::::::::::::
proportional

::
to

::::
the

:::::
mean

::::::::::
prevalence

::
in
::::
the

::::::::::
commune,

:::
i.e. 412

:::::::::::::::::::::::::::::::
µi = 2×M × exp(ui)/(

∑
j exp(uj)):::::::

(where
::
M

::
is
:::
the

::::::::
number

::
of

:::::::::::
communes). 413

Computational aspects 414

All our analyses and simulations were carried out with the R software (R Core Team, 2023). We used the 415

package nimble for model fit (Valpine et al., 2017), coda for the analysis of the fit (Plummer et al., 2006), and 416

tidyverse (Wickham and Grolemund, 2017) and ggplot2 (Wickham, 2016) for data manipulation and graphi- 417

cal displayrespectively. We have .
::::
We programmed an R package named badgertub, available at https://github. 418

com/ClementCalenge/badgertub, containing all the code anddata used to fit themodel. It
:::
The

:::::::
package canbe in- 419

stalled in Rwith the packagedevtools , using the functiondevtools::install_github("ClementCalenge/badgertub",420

ref="main"). This package includes a vignette describing how the user can reproduce easily
::::
easily

::::::::::
reproduce 421

the model fit and simulations (vignette available with the command vignette("badgertub") once the pack- 422

age has been installed). This vignette also serves as the supplementary material of
::
for the paper and contains 423

additional information on our model (e.g., precisions
:::::::
precision

:
on the parameterization of the beta-binomial 424

distribution,
:::
and

:
a
:
formal description of the iCAR model, etc.). 425

426
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Results 427

Model
::::::::::
Collected

::::::
data

::::
and

::::::::
model fit 428

The
:::::::
number

::
of

:::::::
animals

:::::::
trapped

::
in

:::::
each

::
M.

:::::
bovis

::::::
cluster

::::::
during

::::
each

::::
year

::
of

::::
the

:::::
study

::::::
period

::
is

:::::::::
presented 429

::
in

:::
Tab

::
1,

::
as

::
is

:::
the

::::::::::
proportion

::
of

:::::
these

:::::::
animals

:::::::::
diagnosed

::
as

::::::::
infected

::::
with

::
M.

::::
bovis

:
.
:::::
Note

:::
that

:::::
even

::::::
though

::
it

::
is 430

::::::::::
challenging

::
to

:::::::
interpret

::::
the

::::::::
observed

::::::::
temporal

:::::::
changes

::
in

::::::::::
prevalence

::
(as

::::
this

:::::::::
proportion

:::::
does

:::
not

:::::::
account

:::
for 431

::
all

:::
the

::::::
factors

::::
that

:::::::::
influence

:::
the

::::::::::
prevalence,

:::
i.e.,

::::::::::::::
inhomogeneous

::::::::::
prevalence

::::::::
patterns

::
in

::::::
space,

::::::::
sensitivity

:::
of 432

:::
the

::::
tests

::::
used

:::::::::
increasing

::::
with

:::::
time,

::::
etc.),

::::
this

::::
table

::::::
clearly

::::::::::::
demonstrates

:::
the

::::::
overall

::::::::
temporal

::::::
change

:::::::::
observed 433

::
in

::::
each

:::::::
cluster,

:::
i.e.

:::
a
::::::
strong

::::::::
increase

::
in

:::::::::::::::::::
Dordogne/Charentes,

::
a

::::::::
decrease

::
in
::::::::::
Burgundy,

::::
and

::
a

:::::::::
moderate 434

:::::::
increase

::
in

::::::
Bearn. 435

436

Table 1.
:::::::
Number

::
N

:::
of

:::::::
trapped

:::::::
badgers

::::::
during

::::
each

::::
year

::
of

::::
the

:::::
study

::::::
period

:
in
:::::
each

:::
one

:::
of

:::
the

:::::
three

::
M.

:::::
bovis

:::::::
clusters,

::::
and

:::::::::
proportion

::
p
::
of

::::
the

:::::::
badgers

::::
that

:::::
were

:::::::::
diagnosed

::
as

::::::::
infected

::::
with

::
M.

:::::
bovis

:::
(the

:::::::::::::
corresponding

:::::::
number

:
n
:::
of

:::::::
infected

:::::::
animals

::
is

::
in

::::::::::::
parentheses).

Year
Dordogne/Charentes Burgundy Bearn

:
N
: :

p
:::
(n)

:
N
: :

p
:::
(n)

:
N
: :

p
:::
(n)

::::
2013

: :::
449

: :::::
0.024

:::
(11)

: :::
310

: :::::
0.094

:::
(29)

: :::
381

: :::::
0.045

:::
(17)

:

::::
2014

: :::
637

: :::::
0.036

:::
(23)

: :::
636

: ::::
0.05

:::
(32)

: :::
387

: :::::
0.047

:::
(18)

:

::::
2015

: :::
787

: :::::
0.051

:::
(40)

: :::
479

: :::::
0.044

:::
(21)

: :::
189

: :::::
0.042

::
(8)

:

::::
2016

: :::
639

: :::::
0.036

:::
(23)

: :::
429

: :::::
0.037

:::
(16)

: :::
287

: :::::
0.077

:::
(22)

:

::::
2017

: :::
700

: :::::
0.056

:::
(39)

: :::
310

: :::::
0.019

::
(6)

: :::
320

: :::::
0.053

:::
(17)

:

::::
2018

: :::
502

: :::
0.1

:::
(50)

: :::
303

: :::::
0.003

::
(1)

: :::
204

: :::::
0.059

:::
(12)

:

::::
2019

: :::
609

: :::
0.1

:::
(61)

: :::
319

: :::::
0.041

:::
(13)

: :::
202

: :::::
0.109

:::
(22)

:

:::
The

::::::
model

::::::::
provides

:
a
::::::
clearer

:::::
point

::
of

::::
view

:::
on

:::
the

:::::::
infection

::::::::
process.

:::
The

:
estimated parameters of themodel 437

for each cluster are presented in Tab 2. The
:::::::::
abundance

::
of

::::
data

::::::::
available

::
in

:::
the

:::::
three

:::::::
clusters

::::::
results

::
in

:::::::
precise 438

::::::::::
estimations,

:::
as

::::::
evident

:::::
from

:::
the

:::::::
narrow

:::::
width

:::
of

:::
the

:::::::
credible

::::::::
intervals

:::
for

::
all

:::::::::::
parameters

::
in

:::
this

::::::
table.

::::
The 439

situation was contrasted between
::::::
among

:
the three clusters: the infection was strongly decreasing

:::::::
strongly 440

:::::::::
decreased in Burgundy, strongly increasing

::::::::
increased

:
in Charentes/Dordogne and seemed stable in Bearn, as 441

revealed by both the slope β of the year in the model and the APC (i.e.
:
,
:::
the proportion of animals becoming 442

infected in one year). The correlation ρ between the infection status of animals trapped in the same commune 443

was actually rather small in all
::
the

:
clusters (≈ 0.03), revealing that the correlation caused by local factors 444

(social structure, local environment, etc.) was not causing
:::
did

:::
not

::::::
cause a strong dependency between animals 445

of
::
in a commune. On the other hand, there was

::::::::::
Conversely, a strong spatial structure in all the

:::
was

:::::::
evident 446

::
in

::
all

:::::
three

:
studied clusters, with

::::::::
revealing

::::::
distinct

::::::::
patterns

::
of

:
highly infected areas and low risk areas in 447

every
:::::::
low-risk

:::::
areas

:::::
within

:::::
each cluster (see Fig 2).

::::::::::
Specifically,

:::
the

:::
set

::
of

:::::
highly

::::::::
infected

:::::::::
communes

:::::::
formed

::
a 448

:::::::::
connected

::::::
subset

::
of

::::::::::
communes

:::
(i.e.

::
a

::::::
unique

::::::::
subarea)

::
in

:::
the

:::::
three

:::::::
clusters,

::::::
except

::::
the

::::::::::::::::::
Dordogne-Charentes 449

::::::
cluster,

::::::
where

:::
two

::::::
highly

:::::::
infected

:::::::::
communes

:::::
were

:::::::
located

:::
only

::
a
:::
few

:::::::::
kilometers

:::::
away

:::::
from

:::
the

::::
main

::::::::
subarea. 450

:::::::::::
Furthermore,

::::
the

::::::::::
proportion

::
of

:::::::
trapped

::::::::
animals

:::::::::
diagnosed

::
as

::::::::
infected

::::
was

:::::::
greater

::
in

:::
the

::::::
highly

::::::::
infected 451

:::::::::
communes

:::::
than

::
in

:::
the

::::::
other

::::::::::
communes

::::::::
(focusing

:::
on

:::::::::
2017–2019

:::
to

::::
limit

::::::::
temporal

::::::::
changes:

:::::
16%

::
in

::::::
highly 452

:::::::
infected

::::::::::
communes

::
of

::::::::::::::::::
Dordogne-Charentes

::
vs.

::::
3%

::
in

:::::
other

::::::::::
communes;

::::
11%

::
in

:::::
highly

::::::::
infected

:::::::::
communes

:::
of 453

:::::
Bearn

:::
vs.

::::::
0.75%

::
in

:::::
other

::::::::::
communes;

::::
and

::::::::
focusing

:::
on

:::::::::
2013–2015

::
in

:::::::::
Burgundy,

::::::
when

:::
the

::::::::
infection

::::
rate

::::
was 454

:::
still

:::::::::::
noteworthy;

:::::
10.6%

::
in

:::
the

::::::
highly

:::::::
infected

::::::::::
communes

:::
vs.

:::
0%

::
in

:::
the

:::::
other

:::::::::::
communes). 455

456

In the three clusters, there was a close agreement between the parameters estimated by the Bayesian 457

model and the same parameters estimated by the simple linear regression (Tab 2), though
:::::::
although

:
the mean 458

prevalence seems either
::::::
seemed

:::
to

::
be

:
slightly overestimated by the regression approach in the three clusters 459

13



Table 2. Main results derived from the model fit to the three M. bovis clusters. We present here: (i) the

parameters of interest in the model (
:::
the first three rows are the parameters of the model: slope β associated to

::::
with the year, correlation coefficient ρ between

:::
the

:
infection status of animals trapped in the same commune,

:::
and

:
standard deviation 1/

√
τ of the commune effects),

:
; (ii) the average predictive comparison (APC) estimating

the proportion of the population getting
::::::::
becoming infected in one year as estimated by the complex Bayesian

model and by the simpler regression in the highly infected communes (see text), ; (iii) the mean prevalence level

in the highly infected communes in the middle year of the study period (see text) as estimated by the complex

Bayesian model and by the regression. For each parameter and each cluster, we give the point estimate (mean

of the posterior distribution) and the 90% credible interval.

Parameter Dordogne/Charentes Burgundy Bearn

β 0.18 [0.11, 0.25] -0.29 [-0.39, -0.2] 0.05 [-0.04, 0.14]

ρ 0.04 [0.02, 0.08] 0.02 [0.01, 0.04] 0.04 [0.02, 0.08]

1/
√
τ 1.17 [0.87, 1.5] 1.58 [1.11, 2.04] 1.08 [0.69, 1.54]

APC (model) 0.018 [0.009, 0.027] -0.028 [-0.039, -0.017] 0.005 [-0.008, 0.018]

APC (regression) 0.029 [0.02, 0.037] -0.034 [-0.043, -0.024] 0.008 [-0.002, 0.018]

Mean Prevalence (model) 0.126 [0.109, 0.143] 0.08 [0.065, 0.097] 0.112 [0.092, 0.134]

Mean Prevalence (regression) 0.157 [0.141, 0.174] 0.117 [0.098, 0.136] 0.133 [0.113, 0.153]

Figure 2. Location of the three M. bovis clusters in France (D)– the limits .
::::
The

::::::::::
boundaries of the French

departments are displayed on this map– ,
:
as well as the median prevalence estimated by our Bayesian model

for each commune in the Dordogne/Charentes cluster (A), the Burgundy cluster (B), and the Bearn cluster (C).

A common colorscale
::::
color

:::::
scale

:
is used for all clusters (inset in the Bearn map).

, or slightly underestimated by the Bayesian model. 460

461

The
:::
first

:
two sets of simulations revealed that the two indicators estimate correctly

::::::::
correctly

::::::::
estimated

:
the 462

mean prevalence and the mean proportion of animals becoming infected fixed in our simulated situations. 463

On
:::
the one hand, the first set of simulations of two contrasted

:::::::::
contrasting situations (high prevalence or low 464

14



Figure 3. Comparison of the proportion of animals becoming infected in one year estimated using the

regression indicator (see text) with the true value, estimated by simulations for the two different situations

(High
:::
high

:
prevalence = top row; Low

:::
low

:
but increasing prevalence = bottom row) and the different trapping

pressure
::::::::
pressures (mu corresponds to the mean number of animals trapped per commune). The straight

line is the line of equation y = x.

and increasing prevalence) showed that the slope of the year in the regression agreed closely with the true 465

simulated proportion of animals becoming infected in one year, whatever
::::::::
regardless

:::
of the simulated trapping 466

pressure (Fig 3). Of course, the uncertainty was larger
::::::
greater

:
when the trapping pressure was lower (the cloud 467

of points was more dispersed around the line y = x when µ was low), but this indicator estimated correctly
:
; 468

::::::::
however,

:::
this

::::::::
indicator

::::::::
correctly

:::::::::
estimated the target proportion. 469

470

On the other hand, the second set of simulations of different prevalence levels under different trapping 471

pressures showed that there was a close agreement between the intercept of the linear regression and the true 472

mean prevalence level during
:::
the

:
middle year in highly infected communes (Fig 4). Similarly, the uncertainty 473

was larger
::::::
greater

:
for low trapping pressures. 474

475

Since we use a
::::
used linear regression to estimate our two indicators, we can derive confidence intervals on 476

::::::
derived

::::::::::
confidence

::::::::
intervals

:::
for these two parameters using the classical formulas derived from the normal 477

theory. We calculated the coverage probability of the 95% confidence intervals for the different simulated 478

situations (Tab 3 and Tab 4). In both
::::
these

::::
first

:::
two

:
sets of simulations, the coverage probability of

:::::::::::
probabilities 479

::
of

:::
the 95% confidence intervals on

::
for

:
the two indicators was

::::
were

:
closer to 90% than to 95% for moderate 480

trapping pressure. When the trapping pressure was extremely high (i.e.,
:
10 animals trapped in

::
on

:
average in 481

each commune of a cluster), the coverage probability of the 95% confidence interval decreased to ≈ 80% for 482

the proportion of animals becoming infected in one year , and to ≈ 60% for the mean prevalence level during 483

the middle year. 484

485
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Figure 4. Comparison of the mean prevalence level during the middle year estimated using the regression

indicator (see text) with the true value, estimated by simulations for five different prevalence levels (simulated

by fixing different values of the intercept alpha) and the different trapping pressure
:::::::::
pressures (mu

corresponds to the mean number of animals trapped per commune). The straight line is the line of equation

y = x.

Table 3. Coverage probability of the 95% confidence interval on the proportion of animals of
::
in a cluster

getting infected in one year estimated with the simple linear regression, estimated by simulations for the two

tested settings (either high prevalence or low but increasing prevalence) and the 4 trapping pressure
::::::::
pressures.

The value of µ corresponds to the mean number of animals trapped in each commune.

Situation Trapping Pressure Coverage Probability

High µ = 0.5 0.93

High µ = 1 0.94

High µ = 3 0.91

High µ = 10 0.84

Low Increasing µ = 0.5 0.94

Low Increasing µ = 1 0.94

Low Increasing µ = 3 0.89

Low Increasing µ = 10 0.83
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Table 4. Coverage probability of the 95% confidence interval on the mean prevalence during the middle

year in a
::
an M. bovis cluster estimated with the simple linear regression, for the different tested prevalence

levels (Intercept
::::::::
intercept α,

:
; see text) and for the different trapping pressure

::::::::
pressures

:
µ. The value of µ

corresponds to the mean number of animals trapped in each commune.

Intercept TrapPress Probability

α = -4 µ = 0.5 0.91

α =-4 µ = 1 0.90

α =-4 µ = 3 0.78

α =-4 µ = 10 0.58

α =-3 µ = 0.5 0.94

α =-3 µ = 1 0.90

α =-3 µ = 3 0.79

α =-3 µ = 10 0.56

α =-2 µ = 0.5 0.93

α =-2 µ = 1 0.90

α =-2 µ = 3 0.80

α =-2 µ = 10 0.64

α =-1 µ = 0.5 0.92

α =-1 µ = 1 0.90

α =-1 µ = 3 0.77

α =-1 µ = 10 0.58

α =0 µ = 0.5 0.92

α =0 µ = 1 0.92

α =0 µ = 3 0.86

α =0 µ = 10 0.66

::::::
Finally,

:::
the

::::
last

::
set

:::
of

::::::::::
simulations

:::::::
showed

:::
that

:::
as

::::
long

::
as

:::
the

:::::::
sample

::
of

:::::::
trapped

:::::::
animals

:::
can

:::
be

::::::::::
considered 486

:
a
:::::::
random

:::::::
sample

::::
from

::::
the

::::::::::
population,

:::
the

::::::
model

::
is

::::::
robust

::
to

:::::::::
violations

::
of

:::
the

:::::::::
underlying

:::::::::::
hypotheses

:::
(Fig

::
5 487

:::
and

::::
Tab

::
5).

:::::::::
However,

:::::
when

:::
the

:::::::
animals

:::
are

::::::::::::
preferentially

:::::::
trapped

::
in

::::::
places

:::::
where

::::
the

:::::::::
prevalence

::
is

::::
high,

::::
the 488

:::::
mean

:::::::::
prevalence

::
is

:::::::::::::
overestimated

::::
(and

:::
this

::::
bias

:::
will

:::
be

::::::
greater

:::::
when

:::
the

::::::
spatial

::::::::::::
heterogeneity

::
is
:::::::
strong),

::::
and 489

:::
the

:::::
mean

::::::::::
proportion

::
of

:::::::
animals

::::::::
becoming

::::::::
infected

::
in

:::
one

::::
year

::::
will

:::
also

:::
be

::::::
biased

::::::::
(although

::::
this

::::
bias

:
is
::::::
much 490

::::::
smaller

::::
than

::::
the

::::
bias

:::::::
affecting

:::
the

::::::
mean

::::::::::
prevalence,

:::
and

::::
can

::
be

:::::::
ignored

:::
for

:::::::::
moderate

::::::
spatial

:::::::::::::
heterogeneity). 491

::::::::
Similarly,

::::::::::
nonrandom

:::::::::
sampling

:::
can

::::::::
generate

::::
bias

:::
in

:::
the

:::::::::
estimation

:::
of

:::
the

::::
two

::::::::::
parameters

::::::
when

::::
both

::::
the 492

::::::
spatial

::::::::
structure

:::::::
changes

:::::
with

::::
time

::::
and

:::::
when

::::
the

::::::::
sampling

::
is

::::::::
directed

::::::
toward

::::::
highly

:::::::
infected

:::::::::::
communes. 493

::::
Note

::::
that

::
in

::::
our

::::::
study,

:::
the

::::::::
sampling

::::::::
intensity

::::
was

::::::::::::
uncorrelated

::::
with

:::
the

:::::::::
commune

::::::::
random

::::::
effects

::
in

::::
the 494

::::::::::::::::::
Dordogne/Charentes

::::::::
(Pearson

:::::::::
correlation

::::::::::
coefficient

::::::::
between

:::
the

:::::::
number

:::
of

:::::::
trapped

:::::::
badgers

::::
and

:::
ui,::

R
::
= 495

:::::
-0.02)

:::
and

:::
the

::::::
Bearn

::
(R

::
=

::::
0.04)

::::::::
clusters,

:::::::
whereas

:::
the

::::::::
trapping

:::::
effort

::::::::
exhibited

:
a
:::::
slight

::::::::::
preference

:::
for

:::
the

:::::
most 496

:::::::
infected

::::::::::
communes

::
in

:::
the

:::::::::
Burgundy

::::::
cluster

::
(R

::
=

:::::
0.35). 497

Discussion 498

We developed a complex Bayesian model to describe how the infection status of badgers changed in space 499

and time in three M. bovis clusters in France, accounting for the resolution of the data (commune scale), 500

the spatial structure of the infection, the imperfect and variable sensitivity of the diagnostic tests, and the 501

possible correlation of the infection status of badgers within the same commune. This model allowed
::
us

:
to 502

estimate both the mean prevalence level and the mean proportion of badgers becoming infected in one year. 503

We also developed an alternative, much simpler model of the infection process, based on a classical linear 504

regression, which also allowed
::
us to easily estimate these two quantities in the highly infected communes 505
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Figure 5.
::::::::::
Comparison

:::
of

:::
the

:::
two

::::::::
statistics

::
of

:::::::
interest

::
–

::
(A)

::::::::::
proportion

::
of

:::::::
animals

:::::::::
becoming

:::::::
infected

::
in

::::
one

::::
year,

::::
and

::
(B)

::::::
mean

:::::::::
prevalence

::::::
during

::::
the

::::::
middle

::::
year

:
–
:::::::::
estimated

:::::
using

:::
the

::::::::::
regression

::::::::
indicator

:::
(see

:::::
text)

::::
with

:::
the

::::
true

::::::
values,

:::::::::
estimated

::
by

::::::::::
simulations

:::
for

::::
the

:::
two

::::::::
different

::::::::
sampling

::::::::
schemes

::::::::
(directed

:
=
::::
top

::::
row;

:::::::
random

::::::::
sampling

:
=
:::::::
bottom

::::
row)

::::
and

:::
the

::::::::
different

:::::::::
situations

:::::::
(additive

::::::
effects

:::
of

:::::
space

::::
and

::::
time

::
on

::::::::::
prevalence

:::::
either

::::
with

::
a

::::::::
moderate

:
[
::::::::
τ = 0.73]

::
or

:::::
strong

:
[
::::::
τ = 0.1)

::::::
spatial

:::::::::
structure

::
or

:::::::::
interaction

::::::::
between

:::::
space

:::
and

:::::
time

::
on

::::::::::
prevalence

::::
with

:
a
:::::::::
moderate

::::::
spatial

::::::::
structure

:
[
::::::::
τ = 0.73]

:
).
:::::
Here,

:::
we

::::
pool

::::
the

::::
data

:::::::::
simulated

::::
with

:::
the

::::
two

:::::::
possible

::::::
values

::
of

:::
the

::::::::
intercept

:::::::
α = −2

::
or

::::::
α = 0.

::::
The

:::::::
straight

:::
line

::
is
:::
the

::::
line

::
of

:::::::
equation

::::::
y = x.

only. Simulations of the complex model showed that the two simpler indicators were a good approximation 506

::::
good

::::::::::::::
approximations

:
of the true quantities, and could easily be used by stakeholders to estimate the key 507

parameters of the infection process in the most infected communes. 508

509
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Table 5.
::::::::
Coverage

:::::::::
probability

::
of

::::
the

::::
95%

:::::::::
confidence

:::::::
interval

:::
for

:::
the

::::::
mean

:::::::::
prevalence

:::::::::
(intercept)

::::::
during

::::
the

::::::
middle

::::
year

::::
and

:::
the

:::::
mean

::::::::::
proportion

::
of

:::::::
animals

::
in

:
a
::::::
cluster

:::::::
infected

::
in

::::
one

::::
year

::::::
(slope)

::
in

:::
an

::
M.

:::::
bovis

::::::
cluster

::::::::
estimated

:::::
with

::::::
simple

:::::
linear

::::::::::
regression

:::
for

:::
the

::::::::
different

::::::::
sampling

::::::::
schemes

::::
and

:::::::::
situations

:::::::
(additive

:::::::
effects

::
of

:::::
space

::::
and

::::
time

:::
on

::::::::::
prevalence

::::::
either

::::
with

:::::::::
moderate [

:::::::
τ = 0.73]

::
or

::::::
strong

:
[
::::::
τ = 0.1)

:::::::
spatial

:::::::::
structures,

:::
or

:::::::::
interaction

::::::::
between

:::::
space

::::
and

::::
time

:::
on

:::::::::
prevalence

::::
with

:::::::::
moderate

::::::
spatial

::::::::
structure

:
[
::::::::
τ = 0.73]

:
).

::::::::
Sampling

:::::::::
TrapPress

::::::::
Intercept

:::::
Slope

:::::::
directed

: :::::::
Additive,

:::::::::
moderate

: ::::
0.07

::::
0.64

:::::::
directed

: :::::::
Additive,

::::::
strong

: ::::
0.00

::::
0.69

:::::::
directed

: ::::::::::
Interaction,

::::::::
moderate

: ::::
0.23

::::
0.19

:::::::
random

:::::::
Additive,

:::::::::
moderate

: ::::
0.87

::::
0.93

:::::::
random

:::::::
Additive,

::::::
strong

: ::::
0.88

::::
0.91

:::::::
random

::::::::::
Interaction,

::::::::
moderate

: ::::
0.78

::::
0.92

Basically, if the tests used to diagnose M. bovis were characterized by a sensitivity of 100%, our regression 510

approach would be equivalent to a simple linear regression of the M. bovis infection status of each animal 511

coded as a binary variable as a function of the year (the form of the response variable Bi/si in equation 512

:::::::
Equation

:
(5) is just a way to account for the imperfect sensitivity of the tests). The suggestion to use a classical 513

linear regression to model what is basically a binary variable can seem surprising, given that such variables 514

are usually modelled
:::::::
modeled

:
with logistic regressions. We preferred to fit a classical linear regression , since 515

its coefficients (intercept and slope of the year) are directly interpretable as the mean prevalence level and 516

proportion of animals becoming infected in one year respectively. Of course, using a
:::::
Using classical linear 517

regression to predict a binary variable leads to the violation of several hypotheses underlying this method. 518

However, this violation is not really a problem when the aim is to estimate the regression parameters, as long 519

as we do not want to use the regression model to predict the infection status of each animal. Thus, as long 520

as we are only interested
:::::::::
interested

::::
only

:
in the slope and intercept of the regression, it does not matter that 521

the linear regression canin theory ,
::
in

:::::::
theory, predict probabilities of infection greater than 1 or lower than 0. 522

Similarly, as noted by Gelman and Hill (2006, p. 46), “for the purpose of estimating the regression line (as compared 523

to predicting individual data points), the assumption of normality is barely important at all”. Finally, the violation of 524

the homoscedasticity assumption (equal variance of the residuals for all the predicted values) is also a minor 525

issue in this case (Gelman and Hill, 2006, p. 46). The greater interpretability of the regression coefficients and 526

the easier application of the linear regression has
:::::
linear

:::::::::
regression

:::::
have led several authors to recommend 527

this method instead of the logistic regression for binary variables (Gomila, 2021; Hellevik, 2009), as long as the 528

model is not used to predict new data points. Notehowever
:
,
::::::::
however, that the departure from the normal 529

distribution led to low coverage probabilities for the two parameters (and especially the mean prevalence 530

level at mid-period) when the sample size was large. Indeed, in
:::::
under these conditions, the departure from 531

normality has a stronger effect on the estimation of the precision on
::
of the parameters. But

::::::::
However,

:
as long 532

as the mean sample size in a commune is not too large (say
:::
e.g., less than 3 animals per commune and per 533

year), the coverage probability of the 95% confidence intervals derived from the linear regression for these 534

parameters is close to the nominal level , and can provide
:
a rough first approximation of the uncertainty of the 535

target quantities. 536

537

The correlation between
:::
the infection status of badgers trapped in the same commune during a given year 538

was low (≈ 0.03), andwe showed that indicators ignoring it were
::::::
ignoring

::::
this

:::::::::
correlation

::::
was not characterized 539

by strongly biased measures of precision. Other authors have found that different badgers of the same sett 540

have a larger chance to be
::::::
greater

::::::
chance

::
of

:::::
being

:
infected (e.g. Delahay et al., 2000; Weber, Bearhop, et al., 541

2013). However, our spatial resolution is
:::
was

:
much coarser than that in the study

::::
used

::
in

:::
the

::::::
studies

:
of these 542

authors: we work
:::::::
worked at the commune scale (median area of 12 km2), whereas the badger home-range 543

:::::
home

:::::
range

:
rarely exceeds 4 km2 and is often much smaller (Elmeros et al., 2005; Payne, 2014). The traps set 544
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up in a commune often allowed to capture
::::
allow

::::
the

::::::
capture

:::
of badgers from different social groups, thereby 545

limiting the resulting correlation between infection status. Moreover, the local environmental context may be 546

very
:::::
highly

:
variable around different traps within a given commune (e.g.,

:
some places can be very close to 547

an infected farm whereas other
::::::
others can be much further), which also limits this correlation. In addition, 548

on a larger scale, in the complex multi-host
::::::::
multihost

:
system encountered in France, the source of M. bovis 549

infection for badgers might be various
:::
vary

:
and may also come from other wild hosts

:
, such as wild boar (whose 550

movements may exceed the commune scale). If the traps are set where these interspecies transmission may 551

occur, it limits the correlation
:::
the

:::::::::
correlation

::::
may

:::
be

::::::
limited

:
at a commune scale. 552

553

Our complex model identified a very marked spatial structure of the infection in the three studied M. bovis 554

clusters, and both our complex model and the simpler regression approach assumed that this structure was 555

stable in time (i.e., the areas with the highest prevalence remain
::::::::
remained the same every year; even if the 556

mean prevalence increases or decreases
::::::::
increased

:::
or

:::::::::
decreased in time, it changes

:::::::
changed in the same way 557

everywhere). In statistical terms, we supposed the additivity of the
::::::::
assumed

::::
that time and space

:::
had

::::::::
additive 558

effects on the prevalence. If the spatial distribution of the infection had changed over time, which can occur 559

for some disease
::::::
certain

:::::::
diseases

:
(e.g. with some clusters becoming larger with time; see Wobeser, 1994, p. 560

29), this assumption would be violated. However
:::::::::
Simulations

:::::::
showed

::::
that

::
a

::::
mild

::::::::
violation

::
of

:::
this

:::::::::::
assumption 561

::::
does

:::
not

:::::::
impede

:::
its

:::::
ability

:::
to

::::::
assess

:::
the

:::::::
average

::::::::
situation

::
in

::
a

::::::
cluster

::::::
(mean

:::::::::
prevalence

::::
and

:::::
mean

:::::
trend

:::
in 562

::::::::::
prevalence),

::::::::
provided

::::
that

::::
the

::::::
sample

:::
of

:::::::
trapped

:::::::
badgers

::::
can

:::
be

::::::::::
considered

:::::::
entirely

:::::::
random,

::
a
:::::::::
condition 563

::
we

:::::
show

:::
to

::
be

:::::::::::::
approximately

:::::
valid

::
in

:::
our

::::::
study

::::
(i.e.,

:::::
weak

:::::::::
correlation

::::::::
between

::::
the

::::::::
sampling

::::::::
pressure

::::
and 564

:::
the

:::::::::
prevalence

:::
of

::
M.

:::::
bovis

:::::::::
infection).

:::::::::
Moreover, this assumption of additivity is reasonable for the M. bovis 565

infection, as demonstrated by both a preliminary exploratory analysis of our dataset and by
::
the

:
epidemiological 566

properties of this infection. On one hand, the
:::
The

:
preliminary fit of a simplistic generalized additive model 567

to predict the infection status of trapped badgers as a function of space and time showed that space-time 568

interaction
::::::::::
interactions could be ignored in all clusters and that the spatial distribution of the infection in 569

badgers was stable over time during our study period (see appendix
::::::::
Appendix

:
E for more details).On the other 570

hand, this stability can also 571

572

::::
This

:::::
stable

::::::
spatial

::::::::
structure

::
of

:::
the

::::::::
infection

:::
can

:
be explained by the infection dynamic of M. bovis

::::::::
dynamics 573

::
of

::
M.

:::::
bovis in relation to the structure of the multi-host

::::::::
multihost system. Indeed, infection of the badger 574

populationmay result from two different dynamics: a within-species transmission related to the social structure 575

of the badgers
::::::
badger population, and a between-species transmission caused by the contacts

::::::
contact

:
with 576

infected animals of other species – in our context, mainly cattle and wild boar. The relative importance of 577

those
:::::
these two dynamics varies according to the context. For instance, in Burgundy, in a recent study, we 578

found that the spatial structure of the infected badgers population was highly
::::::
badger

::::::::::
population

:::
was

::::::::
strongly 579

related to the spatial structure of the pastures of infected cattle (Bouchez-Zacria, Payne, et al., 2023), suggesting 580

:::
that

:
a between-species transmission dynamicstill very ,

:::
still

:
active 20 years after infection

:
, was detected in 581

both cattle and badgers
:::
the

:::::
cattle

::::
and

::::::
badger

:
populations. In any case, within- and between-species infection 582

dynamics logically lead to a strong and stable spatial structure of badger infection because of (i) the strong 583

social structure of the badger population associated with a small number of dispersing animals that usually 584

move between adjacent groups (Rogers et al., 1998)), ;
:
(ii) the strong spatial structure of the main external 585

source of infection, i.e.,
:
the cattle population, which is

:::
has

::::
been

:
relatively stable over the years,

:
; and (iii) the 586

M. bovis transmission mode, which involves direct or indirect contacts
::::::
contact between animals as well as an 587

infection resulting frequently in a chronic disease (with animals being infectious for a long time). Thus, these 588

elements suggest that the diffusion in space of the
:::::
spatial

::::::::
diffusion

::
of

:
M. bovis infection is rather slow so that 589

it is reasonable to suppose
::::::
assume

:
that the spatial structure of the infection in a cluster is stable over a period 590

of a few years (say
:::
e.g., 5 to 10 years). The two proposed indicators can therefore be used at this time scale 591

to monitor the changes in the infection pattern. In particular, a few informal tests of the indicators seem to 592
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indicate that a 5-year scale is an interesting scale to assess
::
for

:::::::::
assessing the effect of management measures 593

implemented to control the M. bovis infection. When the study period covers more than 10 years, a sliding 594

window in time can be used to fit the linear regression. 595

596

:::
The

::::::::
Bayesian

::::::
model

:::::::::
accounted

:::
for

:::
the

::::::
spatial

::::::::
structure

::
of

::
M.

::::
bovis

::::::::
infections

::
in

::::
each

:::::::
cluster.

::
In

:::::::
contrast,

::::
the 597

:::::::::
regression

::::::
model

:::
did

:::
not

::::::::
consider

::::
this

::::::
spatial

::::::::
structure.

::::::::::
Therefore,

:::
we

:::::::::::
recommend

:::::::
focusing

::::
only

:::
on

::::::
highly 598

:::::::
infected

::::::::::
communes

:::::
when

::::::::
applying

::::
the

:::::::::
regression

:::::::
model,

:::::::::
assuming

::::
that

:::
the

::::::::::
remaining

::::::
spatial

:::::::::
variability 599

:::::
within

::::
this

::::::
subset

::
of

::::::::::
communes

::
is
:::::::::
negligible.

:::::
Note

::::
that

::::
our

::::::::::
simulations

:::::::
showed

::::
that

:::::
even

::
in

:::
the

:::::::::
presence 600

::
of

:
a
::::::::::
substantial

:::::::::
remaining

::::::
spatial

:::::::::
structure,

:::::
there

::::
was

::
no

::::::::::
detectable

::::
bias

::
in

:::
the

:::::::::
estimation

:::
of

:::
the

::::
two

:::::
focus 601

::::::::::
parameters

::::::
(mean

:::::::::
proportion

::
of

::::
the

:::::::::
population

:::::::::
becoming

:::::::
infected

::
in

::::
one

::::
year

::::
and

:::::
mean

::::::::::
prevalence

::::::
during 602

:::
the

::::::
middle

:::::
year),

::::::::
provided

:::
that

:::
the

:::::::
sample

::
of

:::::::
trapped

:::::::
badgers

:::::
could

::
be

::::::::::
considered

::::::::::
completely

:::::::
random.

::::::
When 603

::::::::
sampling

:
is
::::::::
directed

::::::
toward

::::::::::
communes

::::
with

:::
the

:::::::
highest

::::::::
infection

::::::::::
prevalence,

:
a
::::::::::
substantial

:::::::::
remaining

::::::
spatial 604

::::::::
structure

:::::
within

::::::
these

:::::
highly

:::::::
infected

::::::::::
communes

::::
will

:::::
result

::
in

:::
the

:::::::::::
preferential

::::::::
sampling

::
of

:::::::
infected

::::::::
animals. 605

:::::::::
Neglecting

:::
the

::::::
spatial

::::::::
structure

:::
of

:::
the

::::::::
infection

::
in

:::
the

::::::::::
regression

::::::
model

::::
then

:::::
leads

::
to

:::
an

:::::::::::::
overestimation

:::
of 606

:::
the

:::::
mean

::::::::::
prevalence

::::::
during

::::
the

::::::
middle

::::
year

::::
and

::
a
::::::
biased

::::::::::
estimation

::
of

:::
the

::::::::::
proportion

::
of

::::
the

::::::::::
population 607

::::::::
becoming

::::::::
infected

::
in

::::
one

::::
year.

::::::::::
Therefore,

::::::::::
monitoring

:::::::::
programs

::::::::
intending

:::
to

:::
use

::::
our

:::::::::
regression

:::::::::
approach 608

::::::
should

:::
pay

::::::::
attention

::
to

:::::::::::
maintaining

:::::::
uniform

:::::::
trapping

::::::::
pressure

::::::
across

:
a
::::::::
clusters’

:::::
entire

::::
area.

:::
In

:::
our

:::::
study,

::::
the 609

:::::::::
correlation

::::::::
between

:::
the

::::
level

:::
of

:::::::
infection

::
in
::
a
:::::::::
commune

::::
and

:::
the

::::::::
sampling

:::::
effort

:::::::::
remained

::::
low,

:::::::::
suggesting

::
a 610

::::
very

::::::
limited

::::
bias

::
in

:::
our

::::::::::
estimation. 611

612

:::
We

::::::::
assumed

::::::
equal

::::::::::
trappability

::::::::
between

:::::::
infected

::::
and

:::::::::::
noninfected

::::::::
badgers.

:::::::::
However,

::::::::
previous

:::::::
studies 613

::::
have

::::::
shown

::::
that

::::
the

::::::::::
trappability

::
of

::::::::
badgers

::::
may

::
be

::::::::::
influenced

:::
by

::::::
factors

::::
such

:::
as

::::::::
weather,

:::::::
season

::
or

::::
age 614

::::
class (Byrne et al., 2012; Martin et al., 2017).

:::::::::
Therefore,

:::::::::::
trappability

:::::
might

::::
also

::::
vary

:::::
based

:::
on

:::::
other

:::::::::
individual 615

::::::::::::
characteristics,

::::
and

::::::::::
particularly

:::
the

:::::::
infection

::::::
status

::
of

:::
the

::::::
animal,

::::::::
although

:::
we

:::
did

:::
not

::::
find

:::
any

:::::
study

:::::::::
supporting 616

:::
this

::::::::::
hypothesis.

::
In

::::::::
addition,

:::::
other

::::::
factors

:::::::
related

::
to

:::
the

::::::::
infection

:::::
status

:::
of

:::::::
badgers

::::
may

::::::::
indirectly

:::::
affect

:::::
their 617

::::::::::
trappability.

:::::
Thus,

:::::::
several

:::::::
studies

::::::
suggest

::::
that

::::::::
infection

::::
can

::::
lead

::
to

::::::::::
behavioral

:::::::
changes

::
in

::::::::
badgers,

:::::::
making 618

::::
them

::::::
more

::::::
solitary

::::
and

:::::::
mobile,

::::
with

::::::
larger

:::::
home

::::::
ranges

:
(Cheeseman and Mallinson, 1981; Garnett et al., 619

2005; Weber, Carter, et al., 2013).
::
In

:::::::::
particular,

:::::::
greater

:::::::
mobility

::
of

:::::::
infected

:::::::
animals

::::
was

::::::::
observed

::
in
::::
the

:::::
three 620

:::::::
clusters

::
in

:::
our

:::::
study,

:::::::
leading

::
to

:::
an

::::::::
increased

::::
risk

::
of

:::::
being

:::::
killed

::
by

::::
cars;

::::
the

:::::::::
proportion

::
of

::::::::
infected

:::::::
badgers

::
is 621

::::::
greater

::
in

:::::::
animals

:::::
killed

:::
by

:::
cars

::::::::
collected

:::
on

:::
the

::::
side

::
of

::::::
roads

::::
than

::
in

:::::::
trapped

:::::::
badgers

::::::::::::
(unpublished

:::::::
results). 622

:::
This

:::::::
greater

:::::::
mobility

::
of

::::::::
infected

:::::::
badgers

::::
may

::::::::
increase

::::
their

::::::::
exposure

::
to

::::::
traps.

::::::::
However,

:::::
even

:
if
:::::
there

::::
was

::
a 623

:::::::
lingering

::::
bias

::
in

:::
the

::::::::::
prevalence

:::::::::
estimation,

:::::
there

::
is

::
no

:::::::::
indication

::::
that

:::
this

::::
bias

::::::
varied

::::::
among

:::
the

:::::
three

:::::::
clusters 624

::
or

::::::::
between

:::::
years.

::::::::::
Therefore,

::
it
::
is

::::::::::
reasonable

::
to

:::::::
assume

::::
that

::::
the

:::::::::
situations

:::
can

:::
be

:::::::::
compared

:::::::::::
consistently 625

:::::
across

:::::::
clusters

:::
or

:::::::
between

::::::
years. 626

627

During our study period, we observed different tendencies in the 3 main M. bovis clusters in France. In 628

Burgundy, there was an annual decrease of
:
in

:
the proportion of infected badgers between 2013 and 2019, 629

and the mean prevalence in 2016 was estimated at
::
to

::
be

:
0.08 (0.065-0.097) with the model whereas in the 630

2 other M. bovis clusters the tendency was either an annual increase
:
in
::::
the proportion of infected badgers 631

(Dordogne/Charente) or a stabilisation
::::::::::
stabilization

:
(Bearn) with

:
a
:
slightly higher mean prevalence than in 632

Burgundy: respectively 0.126 (0.109-0.143) and 0.112 (0.092-0.134),
:::::::::::
respectively. The observations in the 633

captured badgers’
::::::
badger population are in line with the bTB situation in the bovine population. Indeed, in 634

Burgundy, the incidence in
::
on

:
cattle farms decreased during the same period, which is

:::
was

:
not the case for the 635

2 other clusters (Delavenne, Desvaux, et al., 2021). Burgundy strengthened the bTB control measures earlier 636

than in
:::
did the other regions, especially in terms of early detection of the infected cattle farms and in badgers 637

::::::
badger culling pressure, at least for some years. This is most likely the main reason explaining such

:::
for

:::::
these 638

differences, even if differences in the badger population and multi-hosts
::::::::
multihosts

:
structures may also have 639

played a role. South West
:::::::::
Southwest of France (covering the 2 clusters with the higher

::::::
highest proportion of 640
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infected badgers), is now concentrating
:::
now

::::
has the highest number of M. bovis cases and would still need 641

some (80% of cattle bTB cases and 94% of wildlife cases – all species included– in 2018; see Delavenne, Desvaux, 642

et al., 2021)
:
,
::::
and

::::::::
additional

:
years of effort

:::
are

::::::
needed

:
to see an improvement of

:
in

:
epidemiological indicators. 643

644

Having a follow-up of such indicators is therefore crucial to assess
:::
for

::::::::
assessing

:
the efficiency of the mea- 645

sures being applied. In Sylvatub, it will now be easier to reevaluate the developed indicators regularly in the 646

at-risk areas. We demonstrated that our indicators need to be calculated in
:::
for the most infected communes. 647

In our study, the complex Bayesian model that we used allowed to identify the
::
us

::
to

:::::::
identify highly infected 648

communes (i.e., those with a commune random effect greater than the average), so that those
:
;
:::::
thus,

:::::
these 649

communes can be used in later monitoring for the calculation of the indicators. 650

651

If the present indicators are to be used in other situations (e.g., in newly discovered clusters , or in other 652

countries), there are several options to identify
::
for

:::::::::
identifying

:
those highly infected places. One possibility 653

would be to fit the complex model once, a few years after the time of discovery of the cluster, to identify those 654

communes. But
::::::::
However, other approaches could also be used. Thus, given the reasonable additivity of

:::::
space 655

:::
and

::::
time

::::::
effects

:::
on the infection at a time scale of a few years, one could try to describe the spatial distribution 656

of the infection risk using data collected over a short period , by ignoring the time dimension. For example, the 657

nonparametric approach of Kelsall and Diggle (1995), which estimate
::::::::
estimates the spatial distribution of the 658

risk by calculating the ratio of two probability densities of positive and negative tests in space, could be used to 659

identify the more infected places. 660

661

We developped
:::::::::
developed this regression approach

:
, focusing on the badger populations in the infected 662

areas in France, but it could in theory;
::::::::
however,

::
in

:::::::
theory,

:::
this

:::::::::
approach

:::::
could be used more generally for any 663

infection characterized by an
:::
the

:
additivity of space and time effects on the prevalence. Thus,

:::
the preliminary 664

results indicate that this regression approach could also be used for the wild boar in the three main French 665

M. bovis clusters. In this casetoo, the same Bayesian model provides a good description of the infection 666

(though
:::::::
although

:
the spatial structure is much less clear, C. Calenge pers. com.), which suggests that the linear 667

regression indicators proposed for the badger
:::::::
badgers could also be used for the wild boar monitoring. 668
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